Calland, N., Dubuisson, J., Rouillé, Y., Séron, K., 2012. Hepatitis C virus and natural compounds: A new antiviral approach? Viruses 4, 2197–2217. https://doi.org/10.3390/v4102197
Colson, P., Rolain, J.M., Raoult, D., 2020. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents 55, 105923. https://doi.org/10.1016/j.ijantimicag.2020.105923
Cunningham, A.C., Goh, H.P., Koh, D., 2020. Treatment of COVID-19: Old tricks for new challenges. Crit. Care 24, 6–7. https://doi.org/10.1186/s13054-020-2818-6
Devaux, C.A., Rolain, J.-M., Colson, P., Raoult, D., 2020. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
Fatima, S., Gupta, P., Sharma, S., Sharma, A., Agarwal, S.M., 2019. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future Med. Chem. 12, 69–87. https://doi.org/10.4155/fmc-2019-0206
Gao, J., Tian, Z., Yang, X., 2020. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14, 72–73. https://doi.org/10.5582/bst.2020.01047
Gilling, D.H., Kitajima, M., Torrey, J.R., Bright, K.R., 2014. Mechanisms of antiviral action of plant antimicrobials against murine norovirus. Appl. Environ. Microbiol. 80, 4898–4910. https://doi.org/10.1128/AEM.00402-14
Islam, R., Parves, R., Paul, A.S., Uddin, N., Rahman, M.S., Mamun, A.A., Hossain, M.N., Ali, M.A., Halim, M.A., 2020. A Molecular Modeling Approach to Identify Effective Antiviral Phytochemicals against the Main Protease of SARS-CoV-2. J. Biomol. Struct. Dyn. 0, 1–20. https://doi.org/10.1080/07391102.2020.1761883
Khan, S., Siddique, R., Shereen, M.A., Ali, A., Liu, J., Bai, Q., Bashir, N., Xue, M., 2020. The emergence of a novel coronavirus (SARS-CoV-2), their biology and therapeutic options. J. Clin. Microbiol. 1–22. https://doi.org/10.1128/JCM.00187-20
Koné, W.M., Kamanzi Atindehou, K., Kacou-N’Douba, A., Dosso, M., 2007. Evaluation of 17 medicinal plants from Northern Côte d’Ivoire for their in vitro activity against Streptococcus pneumoniae. African J. Tradit. Complement. Altern. Med. 4, 17–22.
Lai, C.C., Shih, T.P., Ko, W.C., Tang, H.J., Hsueh, P.R., 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 55, 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
Lake, M.A., 2020. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med. 20, 124–127. https://doi.org/10.7861/clinmed.2019-coron
Miyakawa, K., Matsunaga, S., Yamaoka, Y., Dairaku, M., Fukano, K., Kimura, H., Chimuro, T., Nishitsuji, H., Watashi, K., Shimotohno, K., Wakita, T., Ryo, A., 2018. Development of a cell-based assay to identify hepatitis B virus entry inhibitors targeting the sodium taurocholate cotransporting polypeptide. Oncotarget 9, 23681–23694. https://doi.org/10.18632/oncotarget.25348
Pleschka, S., Stein, M., Schoop, R., Hudson, J.B., 2009. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol. J. 6, 1–9. https://doi.org/10.1186/1743-422X-6-197
Rasool, N., Akhtar, A., Hussain, W., 2020. Insights into the inhibitory potential of selective phytochemicals against Mpro of 2019-nCoV: a computer-aided study. Struct. Chem. 1–7. https://doi.org/10.1007/s11224-020-01536-6
Rauš, K., Pleschka, S., Klein, P., Schoop, R., Fisher, P., 2015. Effect of an Echinacea-Based Hot Drink Versus Oseltamivir in Influenza Treatment: A Randomized, Double-Blind, Double-Dummy, Multicenter, Noninferiority Clinical Trial. Curr. Ther. Res. - Clin. Exp. 77, 66–72. https://doi.org/10.1016/j.curtheres.2015.04.001
Rosmalena, R., Elya, B., Dewi, B.E., Fithriyah, F., Desti, H., Angelina, M., Hanafi, M., Lotulung, P.D., Prasasty, V.D., Seto, D., 2019. The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens 8, 1–11. https://doi.org/10.3390/pathogens8020085
Sun, P., Qie, S., Liu, Z., Ren, J., Li, K., Xi, J., 2020. Clinical characteristics of 50 466 hospitalized patients with 2019-nCoV infection. J. Med. Virol. 0–2. https://doi.org/10.1002/jmv.25735
Touret, F., de Lamballerie, X., 2020. Of chloroquine and COVID-19. Antiviral Res. 177, 104762. https://doi.org/10.1016/j.antiviral.2020.104762
Usman, A., Abdulrahman, F.I., Usman, A., 2009. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). African J. Tradit. Complement. Altern. Med. 6, 289–295. https://doi.org/10.4314/ajtcam.v6i3.57178
Yuen, K.-S., Ye, Z.-W., Fung, S.-Y., Chan, C.-P., Jin, D.-Y., 2020. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 10, 40. https://doi.org/10.1186/s13578-020-00404-4