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Abstract
Bench- and pilot-scale successive multi-batch trials were conducted to investigate the performance and
sustainability of fungal conditioning with Penicillium simplicissimum NJ12 for improving sludge
dewatering. The dominant factors affecting the sludge dewaterability improvement by P. simplicissimum
NJ12 were also identified. Fungal treatment with P. simplicissimum NJ12 at a volume fraction of 5% of
the inoculum greatly improved the sludge dewaterability. This improvement was characterized by sharp
decreases in the specific resistance to filtration from 1.97 × 1013 to 3.52 × 1011 m/kg and capillary
suction time from 32 to 12 s within 3 days. Stepwise multiple linear regression analysis showed that a
marked decrease (58.8%) in the protein content in slime extracellular polymeric substances and an
increase in the zeta potential of the sludge (from − 35 to − 10 mV) were the most important factors that
improved the dewaterability of sludge after fungal treatment. Consecutive processes of fungal treatment
could be realized by recirculating the fungal-treated sludge with a recycling rate of 1:2 (Vbiotreated

sludge/Vtotal sludge). The treatment effectiveness was maintained only over three successive cycles, but
replenishment with fresh P. simplicissimum NJ12 would be provided periodically at set batch intervals.
These findings demonstrate the possibility of P. simplicissimum NJ12-assisted fungal treatment for
enhancing sludge dewatering.

Introduction
Sewage sludge is a byproduct of biological wastewater treatment and consists primarily of
microorganisms, extracellular polymeric substances (EPS), organic fibers, and inorganic particles
(Christensen et al., 2015). Generally, sludge management consumes 40%−60% of the total operational
costs of wastewater treatment plants (Low and Chase, 1999). To reduce sludge handling costs,
dewatering is an indispensable process that can greatly reduce the sludge volume, aid in solidification,
and improve the calorific value (Wu et al., 2020). Unfortunately, sludge-borne water is difficult to remove
because it is tightly bound to highly hydrated EPS and other sludge components through adhesive forces
or chemical bonds (Faye et al., 2019; Liu et al., 2016; Neyens et al., 2004; Sheng et al., 2010).

Various physicochemical methods have been applied to improve the sludge dewatering efficiency,
including chemical treatment (e.g., acid, ferric chloride, or lime) (Chen et al., 2001; Wang et al., 2019;
Zhang et al., 2014), physical treatment (e.g., ultrasound, or microwave) (Appels et al., 2013; Cai et al.,
2018; Khanal et al., 2007), and advanced oxidation processes (e.g., Fenton, ozonation, or persulfate
activation) (He et al., 2015; Liang et al., 2020; Maqbool et al., 2019; Wei et al., 2020; Zhang et al., 2014).
These treatment methods are effective at removing bound (i.e., interstitial or intracellular) water from
sludge flocs through the disintegration of sludge EPS and microbial cells (Wu et al., 2020). However, the
high cost and potential ecological risks (e.g., toxic chemical use and residues) sometimes limit the
practical application of these methods. Therefore, inexpensive and green approaches for sludge
dewatering are required.
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A particularly promising option to improve sludge dewaterability is fungal treatment (Molla and Fakhru’l-
Razi, 2012). This technology mainly utilizes the ability of several fungal species to entrap solids sludge
particles and compress them with their filamentous (hyphae) mycelia, which modifies the porosity of the
sludge (More et al., 2010). The first report on fungal treatment for enhancing sludge dewaterability was
by Alam and Fakhru’l-Razi (2003). They found that waste activated sludge treated with a fungal mixed
culture of Aspergillus niger and Penicillium corylophilum exhibited a 98.7% reduction in the specific
resistance to filtration (SRF) (minimum of 1.08 × 1012 m/kg) after 6 days of incubation. Similarly,
Murugesan and coworkers (2014) found that treatment of chemically enhanced primary treatment sludge
with a pellet-forming fungal strain Penicillium sp. improved the dewaterability with a decrease of the
capillary suction time (CST) from 83 to 35 s. After characterizing the EPS content and composition and
the sludge microstructure, some researchers have concluded that the enhancement of sludge
dewaterability with fungal treatment is highly related to degradation of slime EPS and the formation of
larger and stronger bioflocs (Fakhru’l-Razi and Molla, 2007; Liu et al., 2017; Li et al., 2019). Recent
investigations have revealed that at specific operating conditions (temperature, agitation, dissolved
oxygen, and inoculum concentration) fungal treatment with Penicillium expansum can simultaneously
reduce sludge solids (54% of suspended solids), indicator pathogens (2–4 log cycles of total coliforms
and Salmonella), and improve the sludge dewaterability (CST < 20 s) (Bala Subramanian et al., 2010).
Meanwhile, fungal treatment is less energy consuming because the oxygen supply needs of fungi are
approximately one third of the oxygen requirement by bacteria. Fungi also have capability to degrade
complex and diverse substrates and grow in adverse conditions (e.g., low temperature) (Chroumpi et al.,
2020; More et al., 2010). Because of these excellent performances, fungal treatment is recognized as a
cost-effective method for enhancing sludge dewatering and stabilization.

However, most previous studies on the fungus-assisted sludge dewatering have been performed on a
bench-scale and for single-batch experiments, and it is not clear whether this process could be scaled up
to a pilot-scale, successive multi-batch treatment system using recirculated treated sludge. In particular,
little information on the duration or sustainability of fungal treatment for improving sludge dewaterability
is available. Furthermore, although previous studies have examined changes in sludge properties (e.g.,
rheology, surface charge, particle size, and EPS content and composition) during fungal treatment under
different laboratory conditions, the most important factors influencing the sludge dewaterability
improvement are still not identified, such as using multivariate statistical analysis.

The objectives of the present study were to isolate fungal species with the ability of improving sludge
dewatering and investigate the robustness of fungus-assisted dewatering process in bench- and pilot-
scale consecutive multi-batch systems with recirculated treated sludge. In addition, statistical analysis of
stepwise multiple linear regression was used to investigate the relationship between sludge
dewaterability and sludge property parameters, and determine the dominant factors affecting the
dewaterability improvement of fungal-treated sludge. The outcome of this study will expand our
knowledge of the fungal conditioning process and provide information useful for the development of a
viable and economical sludge dewatering technology.
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Materials And Methods
Sewage sludge

The sewage sludge used in this study was collected from a gravity thickener tank at the Taihu New City
Wastewater Treatment Plant in Wuxi, China. All sludge samples were stored at 4°C. The sludge had a pH
of 7.2, total solids content 2.86%, organic matter content 52%, SRF of 1.97×1013 m/kg, and CST of 32 s.

Isolation and characterization of fungal strain

Six fungal strains capable of enhancing sludge dewaterability were isolated from sewage sludge by serial
dilution technique on Martin rose-bengal agar medium. Among these, the isolate strain NJ12 with the
highest ability of decreasing sludge SRF and CST was selected for subsequent sludge treatment
experiments. Fungal universal primers (5′-TCCGTAGGTGAACCTGCGG-3′ and 5′-
TCCTCCGCTTATTGATATGC-3′) were used for PCR amplification in the fungal internal transcribed spacer.
The obtained PCR products were sequenced by Shanghai Majorbio Bio-pharm Technology Co., Ltd
(China). The resulting sequence was compared with available 18S rDNA sequences in the GenBank
database of the National Center for Biotechnology Information (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
The phylogenetic tree of the isolate strain NJ12 (GenBank accession number KT207465) was
constructed by the neighbor-joining method.

The effect of pH on the growth of the isolate strain NJ12 was determined in 150 mL Erlenmeyer flasks,
each containing 0.1 mL active growing culture of the isolate and 50 mL liquid medium with the different
initial pH values between 1.0 and 8.0. All flasks were incubated on a gyratory shaker at 150 rpm and
28°C. Fungal growth was determined by the dry mass method after 72 h of incubation. Four different
incubation temperatures ranging from 25°C to 40°C were selected to examine the effect of temperature
on the growth of the isolate strain NJ12. All experiments were conducted in triplicate.

Preparation of the fungal inoculum

An inoculum of the isolate strain NJ12 was prepared in the form of mycelial biomass according to the
procedures described by Wang et al (2015). First, Czapek-Dox medium was inoculated with fungal cells
(~ 3×106 spores/mL) for cultivation of mycelial biomass. After growing in a gyratory shaker at 150 rpm
and 28°C for 3 days, the fungal culture was collected and filtered through Whatman No. 5 filter paper to
remove the residual medium. The mycelial biomass was washed twice with sterilized distilled water and
then suspended in sterilized distilled water to its original volume. Mycelial biomass with a dry mass of
approximately 6.2 mg/mL was used as the inoculum for subsequent sludge treatment experiments.

Bench-scale fungal treatment of sludge in batch mode

To investigate the role of the isolate strain P. simplicissimum NJ12 in sludge dewatering and identify the
key factors responsible for the dewaterability improvement, four groups of batch experiments of sludge
treatment were conducted in 500-mL flasks. Conical flasks, each containing 200 mL of sludge, were

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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inoculated with P. simplicissimum NJ12 mycelial biomass at four different volume fractions of: 1%, 5%,
10%, and 20%. A flask containing sludge that was not inoculated with P. simplicissimum NJ12 was used
as a control. All flasks were incubated for 8 days at 150 rpm and 28°C. All experiments were performed in
triplicate.

Sludge samples were withdrawn at regular intervals and analyzed for the pH, zeta potential, SRF, CST,
EPS content, and particle size distribution. In addition, organic acid production by P. simplicissimum
NJ12 and the cell density of P. simplicissimum NJ12 were determined during the fungal treatment
process. At the end of the experiment, the microstructural characteristics of the fungal-treated sludge
were investigated. 

Analytical methods

The sludge dewaterability (filterability) was evaluated using the CST and SRF (Alam and Fakhru’l-Razi,
2003; Cai et al., 2018), which were measured using a capillary suction timer (304 M, Triton Electronics
Ltd., U.K.) and the Buchner funnel test, respectively.

The sludge pH was measured using a Leici PHS-3C pH meter. The zeta potential was determined using a
Zeta-Plus unit (NanoBrook 90Plus, Brookhaven Instruments, Holtsville, NY). The sludge particle size
distribution was measured by laser scattering image analysis (MS2000, Malvern Panalytical). Scanning
electron microscopy (S-3400N II, Hitachi Co., Japan) was used to visualize the morphology of the fungal-
treated sludge. Slime EPS was obtained according to the extraction procedure described by Wang et al
(2015). The sludge was centrifuged at 2500 ×g for 15 min and filtered through 0.45μm membrane.
Organic matter in the filtrate was slime EPS. The total organic carbon content was determined using a
TOC analyzer (TOC-5000A, Shimadzu). The polysaccharides content in the EPS was determined using the
phenol–sulfuric acid method. The proteins content in the EPS was measured using the Lowry–Folin
method (Frølund et al., 1996). Quantitative real-time PCR was used to measure the cell density of P.
simplicissimum NJ12. Production of organic acid was monitored by high performance liquid
chromatography with a C18 column (Agilent 1260, Agilent Technologies, CA). 

Statistical analysis

Pearson’s correlation analysis was used to evaluate the relationships between sludge dewaterability and
sludge properties. Stepwise multiple linear regression (MLR) was used to identify and quantify these
relationships. The step criteria used for entry and removal were set according to the significance level of
the F-value, which was set at 0.05. Before MLR, min-max normalization was carried out for the sludge
properties to prevent attributes with large numerical ranges dominating those with small numerical
ranges. In min-max normalization, the minimum value of an attribute was subtracted from each value of
the attribute, and then the difference was divided by the range of the attribute. The normalized values
were between 0 and 1. The advantage of this normalization is that it preserves all relationships in the
data exactly and does not introduce potential bias.
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MLR was used to develop an equation linking dewaterability to sludge properties. Stepwise MLR
constructs a multivariate model for the dependent variable, Y, from a few deliberately selected
explanatory variables. The best equation is selected according to the highest multiple correlation
coefficient (r2) and takes the following form:

where Y is the dependent variable (i.e., the SRF); X1, X2, …, Xn are the independent variables (i.e., sludge
pH, zeta potential, median particle size (d50), EPS content and composition, organic acid concentration,
and fungal cell density); b0 is a constant given by the point where the regression line intercepts the Y axis,
which represents the value of Y when all the explanatory variables are 0; and bi (1 ≤ i ≤ n) is the standard
partial regression coefficient, representing the amount that Y changes by when the explanatory variable
changes by one unit. Equation 1 is a model of the system under investigation in this study and can be
used to identify the variables that affect the response and to what extent, and/or to predict the value of
one variable when the others are not known. 

All statistical analyses were conducted using SPSS Base 18.0 (SPSS Inc., USA).

Pilot-scale fungal treatment of sludge in successive multi-batch mode

To verify the findings from bench-scale experiments, a pilot-scale treatment system at the Taihu New City
Wastewater Treatment Plant was operated in multi-batch mode using recirculated treated sludge. The
pilot system consisted of an adjusting tank, a 200-L fungal treatment reactor, a feeding tank, and a
diaphragm filter press (Fig. 1). This upscaling of the operation enabled us to evaluate the reproducibility
of the fungal treatment process.

First, 7.5 L of P. simplicissimum NJ12 inoculum for fungal treatment was added to the reactor, which
contained 150 L of raw sludge. This experiment ended when the SRF of the treated sludge decreased to
approximately 1011 m/kg, and the multi-batch experiment was started. Six consecutive batches of fungal
treatment were performed with a sludge recycling rate of 1:2 (Vbiotreated sludge/Vtotal sludge) (Fig. S1).
Batches I–VI were conducted using 75 L of recirculated fungal-treated sludge (i.e., inoculums) and 75 L
of fresh raw sludge. The experiments were not temperature controlled and the temperature range was
20°C–25°C. After completion of all the batch tests, treated sludge was pumped into a feeding tank using
a screw pump and then fed into the diaphragm filter press (Langxun Water Utilities Ltd., Hangzhou,
China) for mechanical dewatering. The dewatering process consisted of a 30-min feeding pressing phase
with a pressure of 0.6 MPa and a 15-min diaphragm pressing phase with a pressure of 0.8 MPa. 

Results And Discussion
Identification of the isolated fungal strain NJ12
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The isolate strain NJ12 was identified as Penicillium simplicissimum by morphological observation (Fig.
2) and molecular characterization (Fig. 3). The P. simplicissimum NJ12 produced clumps of mycelial
biomass during its growth. It grew well between pH 2.0 and 7.0, with an optimum pH range of 3.0–6.0,
and had an optimum temperature range of 25°C–30°C (Fig. S2). Penicillium is the commonly occurring
fungus in municipal wastewater sludge. Fakhru’l-Razi et al. (2002) isolated a total of 70 fungal strains
from wastewater and sewage sludge, 39 of which belonged to the genera of Penicillium. Comparative
analysis by Kacprzak et al. (2005) showed quantitatively that the genus Penicillium occupied about 50%
of all studied fungal communities dwelling in sludge (with 104-105 colony forming units/g of dry solids).
Bala Subramanian et al. (2008) isolated the floc-forming fungal strain Penicillium expansum BS30 from
wastewater sludge, and found that its filaments could aggregate small particles and reduce the turbidity
of effluent during sludge settling under controlled conditions (temperature, agitation, and inoculum
dose). 

Bench-scale fungal treatment of sludge with P. simplicissimum NJ12 in batch mode

Changes in sludge dewaterability during fungal treatment

The CST and SRF are widely used to represent the ease of separating water from sludge solids. Generally,
sludge with relatively high CST and SRF values (e.g., CST > 20 s or SRF > 1013 m/kg) is difficult to
dewater (Cai et al., 2018; Li et al., 2019; Neyens et al., 2004). Variations in the sludge SRF and CST during
the fungal treatment process using P. simplicissimum NJ12 with different inoculum percentages are
shown in Fig. 4. The results indicated that an optimal dose of fungal inoculum is important for effective
dewatering of sludge. For example, good dewaterability was observed in the treatment system with an
inoculum volume fraction of 5%, which gave marked decreases in the sludge SRF from 1.97 × 1013 to
3.52 ×1011 m/kg and the CST from 32 to 12 s after 3 days of incubation. These values are equivalent to
normalized reduction rates of 98.2% for the SRF and 62.5% for the CST. Fakhru’l-Razi and Molla (2007)
reported that the maximum percentage reduction in sludge SRF was 70% after 6 days of fungal treatment
with Mucor hiemalis. In addition, 57.3% of reduction in the CST was recorded after sludge was treated
with 5% of Penicillium sp. ACS3 for 4 days (Murugesan et al., 2014). Therefore, P. simplicissimum NJ12
used in this study is comparable to those previously isolated fungi in improving sludge dewaterability. 

Meanwhile, it should be noted that inoculation with excessive fungi (e.g., inoculum volume fraction of
20%) negatively affected the sludge dewaterability, which resulted in CST and SRF values that were
higher than those of the control (without inoculation) over the whole incubation period. This observation
is consistent with earlier studies (Molla and Fakhru’l-Razi, 2012; Wang et al., 2015). Some researchers
have attributed this deterioration in sludge dewaterability with a high inoculation dose to excessive
growth of filamentous fungi. Bala Subramanian et al. (2010) demonstrated that growth of filaments in
large quantities (~ 107 μm filaments/g of activated sludge) hinders sludge settling, which could be
attributed to the fact that excess filaments would physically interfere with close packing of sludge flocs.
Whereas, other investigators believed that the growth of fungi in sludge might be restricted because of
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substrate limitation when employing too high inoculum doses, which leads to the failure of fungal
treatment (Liu et al., 2017; More et al., 2010).

Changes in sludge pH, surface charge and floc size during fungal treatment

During the fungal treatment process, the sludge pH, surface charge, and floc size varied greatly as the
incubation time increased (Fig. 5). The sludge pH of the treatment system inoculated with 5% P.
simplicissimum NJ12 dropped rapidly from an initial value of 7.2 to 5.5 in the first 3 days, and then
leveled out at pH 5.0 at day 6 (Fig. 5a). It has been reported that fungi can secrete certain types of organic
acids, e.g., oxalic acid, citric acid, and malic acid, by metabolizing wide spectrum of organic substances,
depending upon the nature and physiology of the fungus used (Chroumpi et al., 2020; Jernejc and Legiša,
2004). In this study, the dominant organic acid produced by P. simplicissimum NJ12 was gluconic acid
with a maximum yield of 45 mM. This fungal production of gluconic acid did not result in significant
acidification of the treated sludge, possibly because of the strong buffering capacity of the sludge. In
fact, from the perspective of subsequent recycling or disposal of the dewatered sludge cake, fungal-
treated sludge with a mildly acidic pH compares advantageously with chemically-treated sludge. It is well-
known that the pH of sludge treated with persulfate and Fenton’s reagent tends to be very low (usually
2.5–3.5) (Liu et al., 2016; Maqbool et al., 2019; Neyens et al., 2004) and this sludge must be neutralized
by alkaline additives (e.g., Ca(OH)2), which substantially increases the inorganic content of the final
sludge cake and largely limits its use in composting, incineration, or land application as a soil
amendment (He et al., 2015; Li et al., 2019; Wu et al., 2020). A similar sludge acidification dynamic in both
the control group and the fungal treatment group implied that sludge pH was probably not the key
contributing factor to the enhancement of sludge dewaterability observed in this study. This assumption
was verified by our subsequent stepwise multiple linear regression analysis.

Surface charge determines the colloid stability of sludge flocs and is an important factor affecting
dewatering (Yu et al., 2008). Following inoculation with 5% P. simplicissimum NJ12, the zeta potential of
the sludge rapidly increased from –35 mV for raw sludge to −10 mV in the first 3 days, indicating a
decrease in the net surface charge on the flocs. In the control without P. simplicissimum NJ12, the zeta
potential of the sludge increased to −22 mV at day 3 and then remained constant throughout the
remaining experimental period (Fig. 5b). It is widely accepted that sludge flocs are held together firmly by
DLVO forces (i.e., van der Waals and electrostatic forces), non-DLVO forces (i.e., bridging and hydrophobic
forces), and physical entanglement (Christensen et al., 2015; Sheng et al., 2010). Because both sludge
particles and fungal biomass carried negative charges (e.g., carboxylate and phosphate groups) and they
are electrostatically repulsive, the observed interactions between them most likely result from physical
entanglement of the mycelia or mycelial EPS, creating favorable conditions for destabilization and
flocculation of the colloidal sludge.

Figure 6 illustrates the sludge morphology before and after fungal treatment. The raw sludge existed as
rough and fluffy flocs with a discontinuous and porous structure. By contrast, after treatment with P.
simplicissimum NJ12, the sludge appeared smooth and compact with a relatively small particle size.
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Many slender mycelia were twined around the sludge particles and filled the spaces between them, which
would contribute to the strength and rigidity of the fungal-treated sludge and make it capable of
maintaining high permeability under pressure filtration and provide spaces for outflow of free water.
Similar phenomena were observed by previous researchers, who ascribed them to the formation of sludge
pellets by the physical extrusion and entrapping of the filamentous body (Alam and Fakhru’l-Razi, 2003;
Guibaud et al., 2005). In addition, after 3 days of treatment with 5% P. simplicissimum NJ12, a moderate
decrease in the d50 of the sludge flocs occurred from 29.09 to 22.93 μm (Fig. S3; Table S1), and was
probably caused by mechanical destruction by fungal mycelia.

Changes in sludge EPS during fungal treatment

EPS is considered a key factor in the sludge dewatering process (Faye et al., 2019; Neyens et al., 2004; Wu
et al., 2020; Zhang et al., 2014). Several fungi can utilize sludge EPS as sources of carbon and energy for
metabolic activity (Chroumpi et al., 2020). In preliminary experiments, we found that fungal treatment
with P. simplicissimum NJ12 resulted in a sharp drop in the slime EPS concentration but had no
substantial influence on loosely bound EPS and tightly bound EPS (data not shown). In particular, for the
treatment with 5% inoculum, the slime EPS content was cut in half at day 3. Slime EPS are located in the
outermost layer of the sludge and weakly bound to the cell surface (Sheng et al., 2010; Wang et al., 2015).
Compared with tightly bound EPS and loosely bound EPS, which are located more towards the inner layer,
slime EPS perhaps has more opportunities to be metabolized/degraded by P. simplicissimum NJ12.

Further analysis of the major components of the EPS allowed us to determine the compositions that were
more likely to be decomposed by P. simplicissimum NJ12. As much as 58.8% of the protein in slime EPS
was decomposed within 3 days and the concentration decreased from 34.5 to 14.2 mg/L, whereas only
28.5% of the polysaccharide in slime EPS was degraded (Fig. 7). In the control group, both the protein and
polysaccharide contents in the EPS were nearly unchanged throughout the whole experiment. This
observation supports the idea that a decreased protein content in the sludge EPS could enhance sludge
dewatering because of the high water-holding capacity of protein (Cai et al., 2018). 

Dominant factors influencing sludge dewaterability during fungal treatment

Pearson’s correlation analysis was used to describe the relationship between the sludge SRF and selected
sludge properties (pH, zeta potential, particle size, cell density, EPS content and composition). A strong
negative correlation was found between the SRF and zeta potential (R = − 0.929, p < 0.01) (Table 1). It
has been proven an increase in the zeta potential can result in protonation of negatively charged
functional groups in the sludge and thus reduce electrostatic repulsion and reagglomeration of sludge
particles and enhance sludge filterability (Faye et al., 2019; Liu et al., 2016; Zhang et al., 2016). In the
present study, the sludge pH, d50, and protein and polysaccharide contents in slime EPS were all
positively correlated with the sludge SRF. These findings are consistent with those reported by other
authors. For example, Xiao et al. (2016) characterized key organic compounds in 20 different types of
sludge EPS samples using size-exclusion chromatography combined with organic carbon and organic



Page 10/21

nitrogen detection. They concluded that increases in the contents of low-molecular-weight proteins (< 20
kDa) and monooligosaccharides, alcohols, aldehydes, and ketones (< 350 Da) in EPS were the main
contributors to deterioration of the sludge dewaterability. In this study, the correlation coefficients for the
seven tested sludge properties were in the order zeta potential > pH > polysaccharide > d50 > slime EPS >
protein> fungal cell density, which showed that the zeta potential and sludge SRF were more closely
correlated than the other properties.

Correlation analysis conducted with a single parameter could be insufficient because parameters are
often interrelated. Consequently, we used a MLR model to quantify the relationship between the sludge
SRF and sludge property parameters. After min-max normalization, the following MLR equation was
derived for this relationship: 

SRF = −19.93 + 20.8 pH − 10.7 zeta potential − 9.88 d50 − 0.08 cell density − 4.3 protein 

+ 0.81 polysaccharide + 1.79 slime EPS             R2 = 0.89; P < 0.05     (2)

where R2 is determination coefficient, and P is the probability for statistical significance. 

Analysis of variance was used to determine the significance of the MLR model and the estimated
parameters. A determination coefficient R2 of 0.89 indicated good agreement between the experimental
and modeled results (Eq. 2), but the p values for several estimated parameters were insignificant at the
95% confidence level (p > 0.05) (Table 2). (Pr > ׀t׀ indicates the p-value is a two-tailed probability
computed using the t distribution). Therefore, to better describe the relationship between sludge SRF and
the above-mentioned sludge properties, the MLR model Eq. 2 was further modified using a step-wise
selection scheme. After removing non-significant variables (i.e., pH, cell density, polysaccharide, and slime
EPS), a numerical model Eq. 3 was finally established. A determination coefficient R2 of 0.907 was
achieved with this equation, and the p-values of all estimated parameters were significant at the 95%
confidence level (p < 0.001). 

With stepwise MLR, the most important factors determining the sludge dewaterability improvement
during fungal treatment with P. simplicissimum NJ12 were the zeta potential and protein content in slime
EPS. It should be pointed out that sludge is very diverse in terms of type and source and its composition
is very complex, which makes it difficult to identify all factors affecting sludge dewatering (More et al.,
2010; Wu et al., 2020). We believe that other factors could also contribute to sludge dewatering and that
further work is needed to verify or recalibrate this model using different types of sludge, such as primary
and secondary sludge, waste activated sludge, and anaerobic digested sludge. 

Pilot-scale fungal treatment of sludge by P. simplicissimum NJ12 in consecutive multi-batch mode

Good performance at the bench-scale does not guarantee similar efficiency on a larger scale because
most of bench studies are performed in the shake flasks, which allows for careful control of important
process parameters and avoidance of fluctuations. To better assess the feasibility of fungal treatment for
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engineering application, we constructed a pilot-scale operation system for sludge dewatering. In this trial,
six successive batches of fungal treatment were conducted by recirculating the treated sludge rich in P.
simplicissimum NJ12 at a recycling rate of 1:2 (Vbiotreated sludge/Vtotal sludge) into the next batch treatment
as the inoculum. The pilot-scale operation results (Fig. 8) showed that recirculation of the treated sludge
was a feasible method for fungal treatment of consecutive batches. In batch I-III, the sludge SRF
decreased by nearly the same rate to a final value of approximately 1.5 × 1012 m/kg. However, in batch IV,
the sludge dewaterability became poor with an elevated SRF value (∼ 4.2 × 1012 m/kg). This could be
linked to nutrient competition from autochthonous microorganisms in the sludge (Kacprzak et al., 2005;
More et al., 2010). Interestingly, the sludge dewaterability improved again in batch V when the reactor was
re-inoculated with fresh P. simplicissimum NJ12. These results indicate that P. simplicissimum NJ12
should be replenished periodically at a set batch interval to maintain the activity of Penicillium species in
the sludge and ensure the effectiveness of fungal treatment is sustained. 

On the other hand, it was observed that the moisture content of the sludge treated by P. simplicissimum
NJ12 decreased to ∼ 58.6% after pressing in a diaphragm filter press. This water content meets the
Chinese Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2008).
Moreover, such fungal-treated dewatered sludge cakes can be relatively easily used in composting or
incineration because of their high organic matter content and low water content. Further studies on the
possibility of different fungi combinations (mixed fungi species) and combinations of fungi with other
types of microorganisms (phage, bacteria, and yeasts) to achieve maximum sludge dewatering, solids
degradation, and pathogen/toxic compound removal are still needed. Furthermore, a detailed economic
evaluation of the fungus-assisted sludge treatment process should be conducted taking into
consideration the costs of microbial screening, energy demand, and reactor construction. 

Conclusions
Both bench- and pilot-scale successive multi-batch investigations indicated that P. simplicissimum NJ12-
assisted fungal treatment was technically effective at improving sludge dewatering. Consecutive
operations of fungal treatment could be realized by recirculating the fungal-treated sludge and
periodically re-adding fresh P. simplicissimum NJ12. On the basis of statistical analysis by stepwise
multiple linear regression, the degradation of protein in slime EPS and the increase in zeta potential were
the most important factors affecting the dewaterability improvement of the fungal-treated sludge.
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Tables

Table 1.

Pearson’s correlation between sludge SRF and sludge property parameters influencing

dewaterability.
Parameters pH Zeta potential d50 Cell density Protein Polysaccharide Slime EPS

Sludge SRF 0.776** 0.929** 0.591** 0.405* 0.435* 0.645** 0.538**

** Correlation is significant at the 0.01 probability level (2-tailed)
* Correlation is significant at the 0.05 probability level (2-tailed)

Table 2.
Statistical analysis by ANOVA.

Parameter estimates
Variable DF Parameter estimate Standard error t value Pr > ׀t׀
Intercept 1 -19.93 85.759 -0.232 0.819
pH 1 20.80 11.281 1.844 0.080
Zeta potential 1 -10.70 1.373 -7.790 0.001
d50 1 -9.88 3.450 -2.864 0.010
Cell density 1 -0.08 0.448 -0.177 0.861
Protein 1 -4.30 2.009 -2.137 0.040
Polysaccharide 1 0.81 4.536 0.179 0.860
Slime EPS 1 1.79 2.288 0.783 0.443

Figures

Figure 1
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Pilot-scale setup of sludge dewatering system of fungal treatment with P. simplicissimum NJ12.

Figure 2

Morphology of the isolated strain P. simplicissimum NJ12 grown on PDA medium for 3 days (a), SEM
image (b), and mycelial biomass grown in Czapek-Dox medium for 3 days (c)

Figure 3

Phylogenetic tree based on the ITS rDNA sequence of the isolated strain P. simplicissimum NJ12.
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Figure 4

Changes in SRF (a) and CST (b) during fungal treatment of sludge with P. simplicissimum NJ12 at four
different volume fractions of: 1%, 5%, 10%, and 20%.
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Figure 5

Changes in pH (a) and zeta potential (b) during fungal treatment of sludge with P. simplicissimum NJ12
at four different volume fractions of: 1%, 5%, 10%, and 20%.
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Figure 6

SEM images of raw sludge (a) and fungal-treated sludge (b) at the condition of a volume fraction of 5%
of P. simplicissimum NJ12 inoculum and 3 days incubation.
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Figure 7

Changes in slime EPS components and contents during fungal treatment of sludge with P.
simplicissimum NJ12 at a volume fraction of 5% of the inoculum.
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Figure 8

Changes in sludge SRF during pilot-scale consecutive multi-batch fungal treatment with a sludge
recycling rate of 1:2 (Vbiotreated sludge/Vtotal sludge).
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