1 O'Mahony, D. & Bishop, M. Monoclonal antibody therapy. Front Biosci 11, 1620-1635 (2006).
2 Maximiano, S., Magalhães, P., Guerreiro, M. & Morgado, M. Trastuzumab in the Treatment of Breast Cancer. BioDrugs 30, 75-86 (2016).
3 Marcus, R. & Hagenbeek, A. The therapeutic use of rituximab in non-Hodgkin's lymphoma. Eur J Haematol. Suppl 67, 5-14 (2007).
4 Mittendorf, E. et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget 7, 66192-66201 (2016).
5 Schwartzentruber, D. et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364, 2119-2127 (2011).
6 Yamada, A., Sasada, T., Noguchi, M. & Itoh, K. Next-generation peptide vaccines for advanced cancer. Cancer Sci 104, 15-21 (2013).
7 Loi, S. et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. . J Clin Oncol. 31, 860-867 (2013).
8 Stanton, S., Adams, S. & Disis, M. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes: A Systematic Review. JAMA Oncol 2, 1354-1360 (2016).
9 Luen, S., Savas, P., Fox, S., Salgado, R. & Loi, S. Tumour-infiltrating lymphocytes and the emerging role of immunotherapy in breast cancer. Pathology 49, 141-155 (2017).
10 Qin, Z. et al. B cells inhibit induction of T cell-dependent tumor immunity. Nature Medicine 4, 627-630 (1998).
11 Gentles, A. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Medicine 21, 938-945 (2015).
12 Kametani, Y. et al. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination. PLoS ONE 12, e0179239 (2017).
13 Falci, C. et al. Immune senescence and cancer in elderly patients: results from an exploratory study. Exp Gerontol. 48, 1436-1442 (2013).
14 Tsuda, B. et al. B-cell populations are expanded in breast cancer patients compared with healthy controls. Breast Cancer, doi:doi: 10.1007/s12282-017-0824-6 (2017).
15 Tumeh, P. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568-571 (2014).
16 Sharma, P., Hu-Lieskovan, S., Wargo, J. & Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 168, 707-723 (2017).
17 Robert, C. et al. Immunotherapy discontinuation - how, and when? Data from melanoma as a paradigm. Nat Rev Clin Oncol, doi:doi: 10.1038/s41571-020-0399-6. (2020).
18 Topalian, S., Taube, J., Anders, R. & Pardoll, D. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16, 275-287 (2016).
19 Sun, C., Mezzadra, R. & Schumacher, T. Regulation and Function of the PD-L1 Checkpoint. Immunity 48, 434-452 (2018).
20 Zuazo, M. et al. Molecular mechanisms of programmed cell death-1 dependent T cell suppression: relevance for immunotherapy. Ann Transl Med 5, 385 (2017).
21 Brown, J. et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170, 1257-1266 (2003).
22 Balar, A. & Weber, J. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother 66, 551-564 (2017).
23 Yokosuka, T. et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209, 1201-1217 (2012).
24 Shlomchik MJ, W. F. Germinal center selection and the development of memory B and plasma cells. Immunol Rev 247, 107-119 (2012).
25 Pardoll, D. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252-264 (2012).
26 Jiang, X. et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Molecular Cancer 18, 10 (2019).
27 Shultz, L. D. et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol 164, 2496-2507. (2000).
28 Ito, M. et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engagement of human cells. Blood 100, 3175-3182 (2002).
29 Kametani, Y. et al. Humanized Mice as an Effective Evaluation System for Peptide Vaccines and Immune Checkpoint Inhibitors. Int J Mol Sci. 20, 6337 (2019).
30 Seki, T. et al. Expression of glucocorticoid receptor shows negative correlation with human B-cell engraftment in PBMC-transplanted NOGhIL-4-Tg mice. Biosci Trends 12, 247-256 (2018).
31 Miyako, H. et al. Antitumor effect of new HER2 peptide vaccination based on B cell epitope. Anticancer Res 31, 361-3368 (2011).
32 Ito, R. et al. Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation 87, 1654-1658 (2009).
33 Formenti, S. et al. Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients. J Immunother Cancer 7, 177 (2019).
34 Tan, T.-T. & Coussens, L. Humoral immunity, inflammation and cancer. Curr Opin Immunol 19, 209-216 (2007).
35 Berzofsky, J. et al. Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol Immunother 67, 1863-1869 (2017).
36 Brodt, P. & Gordon, J. Anti-Tumor Immunity in B Lymphocyte-Deprived Mice, I. Immunity to a Chemically Induced Tumor. J Immunol 121, 359-362 (1978).
37 Barbera-Guillem, E. et al. B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother
. 48, 541-549 (2000).
38 Monach, P., Schreiber, H. & Rowley, D. CD4+ and B lymphocytes in transplantation immunity. II. Augmented rejection of tumor allografts by mice lacking B cells. Transplantation 55, 1356-1361 (1993).
39 Jäger, D., Taverna, C., Zippelius, A. & Knuth, A. Identification of tumor antigens as potential target antigens for immunotherapy by serological expression cloning. Cancer Immunol Immunother 53, 144-147 (2004).
40 Ladányi, A. Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pigment Cell Melanoma Res. 28, 490-500 (2015).
41 Ladányi, A. et al. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol Immunother. 60, 1729-1738 (2011).
42 Lubbers, R., van Essen, M., van Kooten, C. & Trouw, L. Production of Complement Components by Cells of the Immune System. Clin Exp Immunol 188, 183-194 (2017).
43 West, E., Kolev, M. & Kemper, C. Complement and the Regulation of T Cell Responses. Annu Rev Immunol 36, 309-338 (2018).
44 Zahm, C., Colluru, V. & McNeel, D. Vaccination with High-Affinity Epitopes Impairs Antitumor Efficacy by Increasing PD-1 Expression on CD8 + T Cells. Cancer Immunol Res 5, 630-641 (2017).
45 Bouaziz, J., Yanaba, K. & Tedder, T. Regulatory B cells as inhibitors of immune responses and inflammation. Immunological Reviews 224, 201-214 (2008).
46 Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639-650 (2008).
47 Zhou, X., Su, Y., Lao, X., Liang, Y. & Liao, G. CD19(+)IL-10(+) regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4(+) T cells to CD4(+)Foxp3(+) regulatory T cells. Oral Oncol 53, 27-35 (2016).
48 Nishijima, T., Shachar, S., Nyrop, K. & Muss, H. Safety and Tolerability of PD-1/PD-L1 Inhibitors Compared with Chemotherapy in Patients with Advanced Cancer: A Meta-Analysis. Oncologist. 22, 470-479 (2017).
49 González-Rodríguez, E., Rodríguez-Abreu, D. & (GETICA)., S. G. f. C. I.-B. Immune Checkpoint Inhibitors: Review and Management of Endocrine Adverse Events. Oncologist. 21, 804-816 (2016).
50 Shen, X. & Zhao, B. Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. BMJ. 362, k3529 (2018).
51 Alsaab, H. et al. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol 8 (2017).
52 Peske, J., Woods, A. & Engelhard, V. Control of CD8 T-Cell Infiltration into Tumors by Vasculature and Microenvironment. Adv Cancer Res 128, 263-307 (2015).
53 Wallin, J. et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun 7, 12624 (2016).
54 Vilain, R. et al. Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early During Treatment Predict Response to PD-1 Blockade in Melanoma. Clin Cancer Res 23, 5024-5033 (2017).
55 Song, W. & Craft, J. T follicular helper cell heterogeneity: Time, space, and function. Immunolo Rev 288, 85-96 (2019).
56 Shi, J. et al. PD-1 controls follicular T helper cell positioning and function. Immunity 49, 1-11 (2018).
57 Gu, Y. et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 64-69 (2016).
58 Kametani, F. et al. Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 6, 23281 (2016).
59 Kashiwagi, H. et al. Human PZP and common marmoset A2ML1 as pregnancy related proteins. Sci Rep 10, 5088 (2020).