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Abstract

Neural network-based generation has become a promising area of research

with diverse applications in recent years, such as generating synthetic data,

medical images, celebrity faces and so on. In this study, we try to investigate

the potential of generative models in the field of ceramic tiles design. Specif-

ically, we employ DCGAN and WGAN-GP to generate textures of ceramic

tiles. Our dataset undergoes a semi-automated pre-processing stage, which

has been crucial for achieving high-quality outputs. We analyse the perfor-

mances and outputs of both the models. To examine the spatial quality of

the produced outputs, employing statistical calculation and collecting sur-

vey reviews from professionals in the ceramic tile industry have been done

to gather better insights. Our results demonstrate the potential of gener-

ative models for producing realistic ceramic tiles textures and suggest this

work holds promise for improving the creativity and efficiency of ceramic tiles

design process.
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synthesis

1. Introduction

In every discipline, Artificial Intelligence (AI) has made substantial ad-

vances. As a result, AI being utilized in a variety of ways within the setting of

the arts. It can act as a source of creative inspiration for individuals, as well

as a type of creative assistant that can help with tedious tasks, particularly

in the digital realm. From creating pop songs [1] to imitating great artworks

[2] and sculptures [3], AI has demonstrated its capabilities in a variety of

endeavors. When it comes to producing images from scratch, Generative

Adversarial Networks (GANs) [4] show enormous potential.

Ceramic tiles have been used in houses, shops, and places of worship,

among others as ornamental features for ages. Ceramic tiles are one of the

first forms of decorative art and their durability and stunning beauty have

made them highly valued for centuries. As they shape the look and feel of a

home, tiles are a crucial element of contemporary interior design. They are

employed to produce the appropriate atmosphere. Ceramic tiles are available

in a variety of designs. It can be used on floors, walls, fireplaces, ceilings,

bathrooms, among other purposes. Ceramic tiles are available in a variety of

range of colors and textures, providing for considerable creative versatility.

Designing of ceramic tiles is an important aspect for ceramic industry, as

it is an important role in enhancing the aesthetic appeal and functionality of

architectural spaces. Ceramic tiles design processes have several shortcom-

ings that can hinder creativity and efficiency for designers. The traditional

process of designing ceramic tiles is time-consuming, labor-intensive and of-
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ten relies on manual processes. Also it has reliance on experienced artisans

and limited design options results in a lack of diversity in the market- re-

sulting in few options for consumers. Therefore, the need for a more efficient

and automated approach to ceramic tile design has become increasingly im-

portant.

The motivation behind our efforts stems from the convergence of the no-

tions of exploring the generation ability of machines, the desire for innovative

designs and automating design processes which will address the issues cur-

rently faced by the industry. Two generative models have been applied in

this regard: DCGAN [5] and WGAN-GP [6] to generate ceramic tiles design.

The following step have been performed: (i) Collection of data (ii) Pre-pro-

cessing to enhance the datasets (iii) Training of the models (iv) Evaluating

and analyzing the results through statistical method and professionals’ feed-

back by conducting survey. The final outcome suggests that design patterns

of ceramic tiles of comparable quality can be produced, which is not only per

our observation but also substantiate the outcomes of performed evaluation

steps as well.

2. State of the Art

S. Khalil et al. [7] propose a system based on DCGAN to generate textile

patterns on the industrial scale. While modifying activation functions, the

system uses convolutional layers instead of pooling layers. Their results can

be improved using a large dataset and more training time. They use unla-

belled data in their work. In the end, the authors acknowledge that it will

be interesting to explore if labeled data can further improve the results.
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R. A. Fayyaz et al. [8] try to generate textile images using WGANs GP.

In this paper, they experiment with outcomes of three generative models:

VAEs, DCGAN and WGANs GP [9]. All the models produce novel de-

signs, but WGANs GP delivers the most aesthetically pleasing and realistic

patterns. Based on the authenticity of the picture and the variety of the

produced images, Inception Scores is used to quantify the outcomes of the

models. There are a number of causes for this, including the use of simple

KL divergence [10] by DCGANs to reduce the gap among the produced and

original data’s distribution where as WGANs uses Wasserstein distance [11].

S.S. Nasrin et al. [12] use Deep Convolutional Neural Networks (DC-

GANs) to produce henna pattern images with variations. They explain the

process of using the Generator and Discriminator networks and how they are

pre-processed before being used to train the networks. The authors conduct

experiments using three different dimensions (32x32 pixels, 64x64 pixels, and

128x128 pixels) and find that the 32x32 and 64x64 dimensions produce better

outcomes for their smaller dataset.

D. H. Kim [13] implements Wasserstein loss to reduce mode collapse and

at the conclusion of the discriminator network, adds dropout layer to inject

stochasticity into the widely used DCGAN design. The author also adds

convolutional layers to the generator network to increase expressiveness and

noise smoothness. The experiments were conducted using Nicolas Gervais’

dataset of 64,000 car photos [14], which are categorized by price, model year,

body style, and other attributes. The BoolGAN architecture proposed by

the author achieved a reduced Fréchet Inception Distance (FID) score from

195.922 (baseline) to 165.966.
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Kini et al. [15] try to generate underwater images- implementing DC-

GAN along with the Wasserstein GAN algorithm for the model. The authors

manage to generate images that have a distinct blue hue of water in their

background and most of the images shows sharp resemblance with under-

water creatures like a fish or turtle. Small number of images is a limitation

of the study, acknowledging that larger dataset might have improved their

overall accuracy and image quality.

In this study [16], the authors propose using Generative Adversarial Net-

works (GANs) for augmentation purpose of the EuroSAT dataset [17] for

the classification of Land Use and Land Cover (LULC). They use two dif-

ferent types of GANs, DCGAN and WGAN-GP, to devise images for each

class present in the dataset. This study finds that choice of GAN architec-

ture didn’t significantly affect the effectiveness of the model. Combination

of traditional geometric techniques of augmentation and generated images

by GANs improves the final results compared to the baseline. The authors

conclude that GAN augmentation can be used to improve deep classification

models’ generalizability, which is applied to satellite images.

2.1. Research Gap

In many research studies mentioned, it is seen common practice to amal-

gamate all available images and train the model. However, such an approach

yields suboptimal results. In our study, a semi-automatic image clustering

technique has been adopted prior to training. To our knowledge, it is also the

first approach to apply two variants of GANs to design ceramic tiles textures,

compare their outputs using mathematical and survey based evaluation.
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3. Methodology

This section presents the methodology used for data collection, along

with the associated challenges encountered. The pre-processing steps that

were undertaken to improve the quality of the datasets have been outlined.

Moreover, DCGAN and WGAN-GP have been used to generate tiles design

which are described in this section. Additionally, the hyperparameters used

and hardware setups utilized for training have been mentioned in this section.

Figure 1: Flow diagram of preparing the datasets

6



Figure 1 shows the overall flow diagram of preparing datasets from the

originally collected dataset. At first, the dataset was populated with ceramic

tiles images from the internet. As it had variety of design textures mixed

together, it was divided into multiple clusters with the help of inception

v3 and k-means clustering. Afterwards, unwanted clusters were removed

through manual inspection. Then image hashing was used to remove the

duplicates images within the remaining clusters. Later, design texture-wise

same clusters were manually put together to make different tiles categories.

3.1. Data Collection

GAN models generally need a huge amount of data to work well [4]. For

our work, images of ceramic tile textures were collected from various public

websites of ceramic tile companies, as there were no ready-made datasets

available. Initially around 20000 images were collected. Several issues were

encountered during the bulk download of images from the websites, including

duplication of images, unnecessary backgrounds in the form of tiles shown in

the bathroom or living room, multiple tiles segmented in one image, varying

view angles and so on. Fig2 shows examples for different faulty images when

collecting the data.
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(a) (b) (c) (d) (e)

(f) (g)

Figure 2: Different types of faulty images found during data collection. (a) & (b) are

examples of duplicate images, (c) is of an image with different view angle, (d) is of a 3D

rotated image, (e) is of multiple segmented images of tiles together, (f) & (g) are examples

of tiles image with backgrounds

3.2. Pre-processing

Manually filtering the unwanted, defective images would be tedious. Also

there were different kinds of categories in the downloaded tiles images. If

there are many categories present, GANs are prone to the sampling of the

input data, moreover, combining all categories of data without accounting

for these factors may lead to suboptimal results [18, 19, 20]. So categorizing

the images could help in the GANs training and generate more specific types

of ceramic tiles textures.

A semi-automatic process was used to cluster the collection of images. The

dataset comprised of all the downloaded images was first passed through

a pre-trained Inception v3 model [21] to extract feature vectors [22]. K-

means clustering algorithm [23] was then applied to automatically cluster the

images, which were organized into separate folders. The automatic clustering
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process can not categorize the tiles as required, therefor, a manual process is

required for perfecting the process.

Setting up a proper cluster size is a difficult problem, In tile clustering

context, it is set empirically rather than theoretically. The initial cluster size

of 3 resulted the grouping together dissimilar images. To improve clustering,

the cluster size was increased with a fixed step size as each process required

between 4-7 hours to complete, which narrowed the scope of repetitive ex-

perimentation with linearly increasing values. After that cluster size of 50

was implemented and it was found to be satisfactory for grouping similar

textile patterns together. As an additional note, it grouped the unwanted

faulty images together in some of the clusters, which made it easier to deduct

them from the dataset. Finally, as per our observation, cluster with similar

texture patterns were manually combined by experts, resulting in three main

clusters or categories. They are:

(i) Brick styled (ii) Plain styled (iii) Marble styled

These names were assigned following the nature of their design texture. Brick

styled ones had various kinds of brick-like design on them, Marble styled

ones had the familiar wave-like designs that we see in tiles and Plain styled

ones only consisted of solid colors. Other than the mentioned three, a few

categories were discovered through clustering, but due to their very limited

quantity, they were not considered for separate categorization for training.

Some cluster contained duplicate images. These duplicate images were

removed using the perceptual hashing technique, an approach for image du-

plication [24]. Python library called ’ImageHash’ was used to compute a

perceptual hash for each image [25].
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(a) Brick Style (b) Plain Style (c) Marble Style

Figure 3: Categories of styles found after the pre-processing steps

Fig3 shows some examples titles of three categories. The Brick and Mar-

ble styled categories were focused on, as the plain styled category was deemed

insufficient in terms of creating appealing designs. The two categories were

then augmented using vertical flip, horizontal flip, and random rotations

(with the exception of Brick styles, which were rotated 90 degrees to the

left and right) [26]. Other augmentation techniques, such as cropping, image

zooming, and color orientation, were avoided in order to preserve the origi-

nal designs. The Marble styled category contained 2163 raw images, while

the Brick styled category had 1871 raw images. Following augmentation,

the Marble styled category contained 12978 images, and the Brick styled

category had 14892 images. However, due to limited memory resources 1,

the exact number of tiles could not be used for training purpose. At most,

12000 images could be used for each category.

1Table 3: Training time and hardware for different models
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Style Before augmentation After augmentation Used for training

Marble 2163 12978 12000

Brick 1871 14892 12000

Table 1: Types of styles in dataset, quantities before and after augmentation and the

numbers used for training

3.3. Models Setup: Hyperparameters

The architecture followed for training DCGAN model was the same as

Radford et. al. [5] and for WGAN-GP, it was same as Gulrajani et. al. [6].

The hyperparameter values were tweaked to adjust according to our dataset.

Also, additional layers were added to both the generator and discriminator

models. Most research papers used 32x32 or 64x64 images, requiring fewer

layers to achieve the desired output. In our case, the models had to operate

on larger 128x128 images, extra layers i.e. Convolutional layers, LeakyReLU

layers were applied accordingly. The values used for training the models have

been shown in the following table 2:
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DCGAN 128x128 3 12000 400 2e-4 0.5 32 100

WGAN-GP - - - - 1e-4 5 3 - -

Table 2: Hyperparameters setup that has been used during training. (Absence of respec-

tive hyperparameter value has been left as empty and similar value as above has been

indicated by using ”-”)

3.4. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are models consisting of dis-

criminator and generator which are two deep neural networks. The generator

is trained such that it can produce outputs resembling a predefined dataset,

while the discriminator is trained to tell apart original and the generated

data. Together these neural networks are trained in a game-like way. The

generator attempts to mimic more natural samples and the discriminator

attempts to improve its ability to separate the generated and real data.

3.5. DCGAN

DCGAN (Deep Convolutional Generative Adversarial Network) architec-

ture includes several modifications to the original GAN architecture to im-

prove its performance for image generation. These modifications include

using convolutional and transpose-convolutional layers in the generator and

discriminator networks, using batch normalization in both networks and also
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using ReLU and LeakyReLU activation functions in the generator and dis-

criminator networks respectably [5].

Several studies [5, 27] have compared the performance of DCGANs with

the original GAN architecture, and found that DCGANs generate higher

quality images with fewer training iterations and less sensitivity to hyperpa-

rameters, making DCGANs a better choice for image generation tasks than

the original GAN architecture.

3.6. WGAN-GP

WGAN-GP (Wasserstein Generative Adversarial Network with Gradient

Penalty) is a modification of GANs framework that addresses several of its

limitations, such as mode collapse and instability. The loss function applied

in WGAN-GP is mentioned:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]

︸ ︷︷ ︸

Original critic loss

+λ E
x̂∼Px̂

[(∥∇x̂D(x̂)∥2 − 1)2]
︸ ︷︷ ︸

Gradient penalty

(1)

Original critic loss part measures the distance between the distribution

of the outputted samples and of the real samples. In traditional GANs, the

loss function is built on the basis of Jensen-Shannon divergence or Kullback-

Leibler divergence, that can be difficult to optimize and can lead to insta-

bility. The Wasserstein distance, on the other hand, has several desirable

properties that make it more suitable for GAN training, such as being con-

tinuous and having a meaningful interpretation as a distance metric.

The second part of the loss function is used to enforce the Lipschitz con-

straint on the discriminator. The Lipschitz constraint limits the maximum

slope of the discriminator function, preventing it from becoming too power-

ful and causing instability in the training process [28]. It achieves this by
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penalizing the discriminator when its gradient norm exceeds 1, thereby en-

couraging the discriminator to have a more uniform gradient throughout the

input space.

Together, these two components of the WGAN-GP loss function provide

a more stable and effective framework for training GANs, allowing for better

convergence and preventing mode collapse. Smith et al. [29] showed the

performance of WGAN-GP and DCGAN in generating realistic facial images

found that WGAN-GP outperformed DCGAN in terms of visual quality,

diversity and stability, requiring fewer iterations to converge.

3.7. Hardware and Training Time

For the purpose of training, an initial attempt was made to train the

models using Google’s Colab GPU. However, due to the strict time limit

policy and the extended time required for training, an alternative approach

was sought, utilizing locally available hardware to facilitate faster training

with no time constraints. Table 3 displays the relevant hardware information

utilized during the training process.
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Hardware Model Memory CUDA cores 1 epoch

NVIDIA GTX
DCGAN

6GB
1408 39 seconds

1660 SUPER GDDR6

Colab GPU
DCGAN

24GB
4992 264 seconds

(Tesla K80) GDDR5

NVIDIA GTX
WGAN-GP

6GB
1408 41 seconds

1660 SUPER GDDR6

Colab GPU
WGAN-GP

24GB
4992 266 seconds

(Tesla K80) GDDR5

Table 3: Training time and hardware for different models

4. Results & Analysis

Within this section, input samples of Marble and Brick styled datasets are

shown explaining their characteristics. A thorough description and analysis

of the outputs with DCGAN, along with the encountered shortcomings, are

presented. Additionally, the training loss graphs of WGAN-GP for both

the Marble and Brick styled datasets are evaluated in accordance with the

properties of loss graphs. The subsequent discussion describes and analyzes

the outputs produced by WGAN-GP, followed by an introduction of the

methods employed to evaluate the generated outputs and the outcomes of

said methods.

4.1. Experimental Inputs: Marble and Brick Styles

The texture design of marble textured ceramic tiles is intended to mimic

the natural veining and texture of real marble [30]. The texture and design
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can vary depending on the specific manufacturer and product line. These

are commonly used for flooring, walls, countertops, and backsplashes in both

residential and commercial settings [31]. Some tiles may feature a subtle

veining pattern, while others may have a more pronounced and dramatic

pattern. In figure 4, a set of Marble-styled ceramic tiles design is shown

which has been used as input for training phase. Some of them are light-

colored with a hint of veining pattern (i.e.: 2nd row, 2nd column) and also

some of are showing a more striking and prominent pattern (i.e.: 2nd row,

4th column).

Figure 4: Marble styled input sample

On the other hand, brick styled ceramic tile texture is a type of ceramic

tile that is designed to resemble the texture and appearance of traditional

brick. These tiles have a rough, uneven surface, with irregular edges and

divots that give them a distinctive, rustic look. The texture is intended to

mimic the natural variations found in real brick, creating a warm, inviting

ambiance in any space [32]. In figure 5, a set of Brick-styled ceramic tiles
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design is shown which has been used for training phase.

Figure 5: Brick styled input sample

4.2. DCGAN Outputs & Shortcomings

With the hyperparameters and training setups mentioned in the previous

section, the Marble styled pre-processed dataset was trained in DCGAN. The

produced outputs are shown in figure 6. As per our observation, the outputs

were resembling the Marble styled dataset(figure 4) quite well,

Figure 6: DCGAN outputs for training on Marble styled dataset
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Also observed that the outputs were following a handful of texture pat-

terns. In figure 7 below, based on the outputs of figure 6, the generated

outputs that were texture-wise similar are put together in the same row.

Figure 7: Texture-wise similar outputs of DCGAN based on figure 6. Similar texture-

followed designs are kept in the same row

This phenomenon occurred due to mode collapse [33], where the model

generates outputs that are limited to a small subset of the possible range of

outputs. The model appears to be stuck or fixated on a single mode of the

data distribution and fails to generate diverse outputs that reflect the full

range of variation in the data [34]. While these outputs followed the same

texture patterns, there were significant variations in color and hue among

almost all of them (figure 7).

Mode collapse could occur for variety of reasons. It could occur when

the generator network is not powerful enough to learn the full complexity of

the sampling of the data [34]. Or when the discriminator is too strong and

can easily identify and reject most of the generator’s outputs [33]. It could
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also happen if the optimization algorithm get stuck in a local minimum,

and fail to explore other areas of the objective function that correspond to

different modes of the data distribution [34]. Investigating the actual reason

behind mode collapse and overcoming it for the DCGAN model is beyond

this research work, also it would need much time for exploration and training.

As it showed vulnerability towards mode-collapse, it was decided not to go

ahead with DCGAN and the Brick styled dataset was not trained with this

model.

4.3. Loss Graphs

A loss graph plots the loss function value over the period of the training

process. X-axis presents the number of iterations or epochs (passes through

the entire training dataset), while the Y-axis shows the loss function value.

Interpreting GANs loss graphs provide insights into the performance of a

GANs model. Generally generator’s and discriminator’s loss graphs are anal-

ysed separately and both posses specific characteristics that defines the suc-

cess of their training.

To differentiate original data from generated ones is the discriminator

network’s job. In early stages of the training, discriminator will be very

good at this task, and the generator will struggle to produce convincing

data. As a result, the discriminator loss will be low and the generator loss

will be high. As the generator improves, the discriminator will find it harder

to individualize the generated and real data and discriminator loss will start

to increase. This is a good sign signifying the generator is starting to produce

more convincing data [34].

The job of the generator is to produce convincing data that can fool the
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discriminator. In the early stages of training, the generator will produce

low-quality data that is easily distinguishable from real data. As a result,

the generator loss will be high. As the generator improves, the generator loss

will start to decrease, which means the generator is producing higher-quality

data that is more similar to real data.

If the generator loss starts to decrease too quickly, it could be a sign of

mode collapse, which means it is only producing a subset of the possible data.

In this case, discriminator will become very good at differentiating between

the generated and real data and the discriminator loss will start to decrease.

If the generator loss continues to decrease while the discriminator loss

starts to increase, it could be a sign of overfitting. This means the generator

is becoming too good at generating which is of similar-like with that of the

training ones, but actually not generalizing well in terms of new data.

4.4. WGAN-GP Training

WGAN-GP model’s generator and discriminator loss per epoch is shown

for both of the datasets. For Marble styled dataset, it is shown in figure 8

and for Brick styled dataset, it is shown in figure 9.
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(a) Loss per iteration

(b) Loss per epoch

Figure 8: Generator and discriminator loss for Marble styled dataset

In figure 8(a) loss per iteration, the generator’s loss was high at the begin-

ning, which is expected and discriminator’s loss was good enough to provide

appropriate feedback to the generator to improve its outputs. Both losses

gradually decreased which is a good sign for stable generation. In figure 8(b)

loss per epoch, it is observed that the discriminator loss stabled around -0.6

and generator loss stabled around 0. [34].
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(a) Loss per iteration

(b) Loss per epoch

Figure 9: Generator and discriminator loss for Brick styled dataset

In figure 9(a) loss per iteration, for training Brick styled dataset, it is seen

that generator loss was high and discriminator loss was also not too low at the

beginning; therefore the generator could learn, however after a certain point

the discriminator loss did not decrease though the generator loss decreased

a bit. The model may have struggled to learn properly therefore causing the

losses to be a little high and almost static, also the generator was not able

to provide high quality output which resulted in such a situation [33]. In

figure 9(a) loss per epoch, the loss graph became stable after 20 epoch of the

training. Discriminator loss stabled around -20 and generator loss stabled

around 0.

4.5. WGAN-GP Outputs

Resulting outputs produced by WGAN-GP model trained on Marble

styled dataset is shown in figure 10. To our observation, the texture pro-
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duced is quite strongly resembling the characteristic of marble styles (figure

4). Among them most of the designs are light colored with subtle design.

And the rest of them are showing a more resilient texture. The outputs

are not following any specific design texture like DCGAN outputs (figure 6).

These generated designs seem to be more vibrant and natural looking.

Figure 10: WGAN-GP outputs for training on Marble styled dataset
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Resulting outputs produced by the WGAN-GP model training on Brick

styled dataset is shown in figure 11. To our observation, the outputs are re-

sembling brick styles quite well (figure 5). These produced outputs not only

has variations design-wise but also are diverse in different colors and hues.

Figure 11: WGAN-GP outputs for training on Brick styled dataset

4.6. Evaluation

The evaluation of generated outputs is a challenging task and there is

ongoing research on developing suitable metrics for this purpose[35, 33, 36].

Different metrics might be better suited for different types of outputs, also

we believed it was important to consider the subjective judgement of human

experts. So we decided to conduct two kinds of evaluation for our case. Using
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FID Score [35] and through survey review from professionals related to the

ceramic tiles industry.

Figure 12: Outputs evaluation flow

4.6.1. Using FID Score

Generative adversarial networks are often evaluated using the Fréchet in-

ception distance (FID) score, a statistical technique that correlates with the

perceived quality of generated images. FID score is utilized to assess im-

age quality produced by a generative model [35]. The FID score is defined

as the Wasserstein distance squared between two multidimensional distri-

butions(Gaussian): N (µ, Σ), which represents the distribution of certain

features of the GAN-generated images and N (µw, Σw), which represents the

distribution of the similar features from the real images, which is used to

train GAN. By features, it is meant neural network features. Typically, the

ImageNet-trained Inception v3 neural network is used for this purpose. The

FID can be estimated by calculating the covariance and mean of the feature

activations when synthetic and original data are provided into the Inception
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network [37].

FID = ∥µr − µg∥
2 + Tr(Σr + Σg − 2(ΣrΣg)

1/2) (2)

FID score indicates the degree of similarity between the two sections

statistically on the aspects of the original pictures obtained using the im-

age classification model inception v3. In this case, the final pooling layer

preceding the classification output of pictures is utilized to collect character-

istics (computer-vision-specific) of an input image. Calculating the average

and covariance of the images, as a multivariate Gaussian the activations are

summed. For the activations, these statistics are derived throughout the

whole collection of actual and synthetic images.

Our augmented datasets which were used for training could not be used

due to the memory constraints2 in our CPU. For our training purpose- we

used 12000 marble textured and 12000 brick textured images 1, but for cal-

culating FID scores, we could only show the results for the datasets that

had only unique images, as its quantity (2163 for marble and 1871 for brick

textures) sufficed our memory limits almost to the full extend and therefore

would not be enough for the augmented ones. The summary of the FID Score

is shown in the following table 4:

2Table 3: Training time and hardware for different models
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Category Images Quantity FID Score

Marble
Dataset 2163

109.379
Generated 2464

Brick
Dataset 1871

148.367
Generated 1024

Table 4: FID scores for Marble and Brick styles

For both cases, our generated outputs performed quite well. Marble tex-

ture generated outputs seemed more mesmerizing to us and its FID score

also came less than that of the brick’s.

4.6.2. Through Human Survey

Human evaluation is an important aspect, specially in case of a research

on arbitrary image generation like ceramic tiles texture, as it can provide

a more nuanced and accurate assessment of the quality of the produced

images compared to automated metrics alone. While automated metrics

such as Fréchet Inception Distance (FID) provided a quick and efficient way

to examine the outputted images, but they are limited in their ability to

capture certain aspects of image quality, such as subjective aesthetic appeal,

which is for our case, quite significant. By having human evaluators rate the

generated images based on various criteria such as realism, coherence, and

aesthetic appeal, we can obtain a more accurate and nuanced assessment of

the generated images.

The goal of the survey is to evaluate GAN-generated tile designs along

with real tiles by human experts. To conduct our survey, we chose not to
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take reviews from general people as there would remain a possibility that

their opinions maybe be biased. Moreover, the professionals who had been

working in the ceramic industry (as designers, merchants etc.) could judge

the generated outputs better and can give reviews based on the designs’

market demand as well. So our survey participants were those individuals

whose background aligned with our motive.

Showing only the generated images and getting reviews of them could not

ensure a fair outcome of the survey. In order to conduct this comparison-

based survey properly, a few of the generated tiles images were mixed up in

equal amount with the real ones (from the dataset) and the reviewers were

asked to rate the tiles based on the design textures. For preparing the survey

sheet, it was made sure not to put all the best-quality generated images in the

survey. A variety of generated images that were of good, average and below

average according to our view were selected to be in the sheet maintaining a

specific ratio (good 2: average 1: below-average 1).

Figure 13: Flow of events of taking survey review

A total of 29 sets of reviews were conducted in the ceramic tiles shops lo-

cated in Banglamotors, Dhaka. The reviewers were either ceramic tiles shop

owners, merchants or designers. The images of these review sheets have been

28



uploaded to this3 github repository. Each of the sheets contained 8 ceramic

tiles texture images shuffled up, where 4 of them were from the training

dataset and 4 were from generated ones. Out of the 29, 17 sheets contained

marble textured images and the rest 12 were of brick textured images. For

each image, 5 options were given to evaluate them: Very Good, Good, Av-

erage, Bad and Very Bad. The participants of the survey would tick/mark

only one option that seemed better suited for each corresponding texture to

them. Before conducting the survey, each of the reviewers were explained

the procedure, so they could give reviews accordingly. The reviewers had no

prior knowledge about which of these textures were generated and which of

these were real tiles images. In the end, following this procedure, unbiased

reviews from the participants were collected. In table 5, the total counting

have been shown for all the respective criteria and following after that in

table 6, review counts in percentage based on review options are shown.

Style Type VG G A B VB

Marble Generated 16 25 20 7 0

Marble Real 22 24 15 7 0

Brick Generated 12 10 13 12 1

Brick Real 11 20 10 7 0

Table 5: Review counts from survey. In the columns VG stands for Very Good, G is for

Good, A is for Average, B is for Bad and VB is for Very Bad

3https://github.com/labibabdullah/Survey-documents-of-Devising-Ceramic-Tiles-Design?

fbclid=IwAR3cjgvwhUaHjuNutIIjxtcrIdEU3W7pbT69sQrbYI3_NBIOgu0blGjgi6M
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Review GM RM GB RB

Very Good 26.2% 36.1% 19.6% 18.1%

Good 31.6% 30.4% 12.7% 25.3%

Average 34.5% 25.9% 22.4% 17.2%

Bad 21.2% 21.2% 36.4% 21.2%

Very Bad 0.0% 0.0% 100.0% 0.0%

Table 6: Review counts in percentage based on review options. (GM: Generated-Marble

style, RM: Real-Marble style, GB: Generated-Brick style, RB: Real-Brick style)

Among the reviews (table 6), real-marble styles got the most number

(36.1%) of Very Good, and in terms of Good reviews, generated-marble styles

got the most(36.1%). It also got height Average reviews (34.5%). For getting

Bad reviews generated-brick got the most (36.4%) and in the end it also got

the only Very Bad review as well.

Figure 14 shows the review counts in bar diagram collected for only the

generated design textures. Some of the generated designs were very much

liked by the reviewers as the designs seemed new and refreshing, while some

of the reviewers preferred ones that were currently on par with market trends.

Quite a few of the designs got skewed ratings, while some of them got mixed

reaction. Out of the three sections shown in the figure, the first two is

comprised of generated Marble styled textures and the last one is comprised

of generated brick styled textures according to the review sheets.
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Figure 14: Individual review counts of the generated-surveyed designs

31



Analyzing table 5 and 6, getting reviewed as Very Good, real-marble styles

got the most votes- the reason would be the sharpness of wave-like designs in

the marble texture dataset that is very much tough to mimic in our generated

128x128 images. In terms of getting Good reviewed, generated-marble styles

went on head-to-head with real-marble styles as the model could produce low-

sharp but decent designs. Similarly, for getting reviewed Average, generated-

marble styles got a better count than the others. Moreover, the generated-

brick style got more Good reviews than the training dataset; the reason

would be the uniqueness of these designs-according to some of the survey

participants. In terms of getting Bad reviewed, the generated-brick style

got more counts as some of the designs were unrealistic and would not go

with the general usage patterns of these kinds of tiles. And only one of the

generated-brick styles got Very Bad reviewed- for the similar cause.

Figure 15: Spider-chart of the survey reviews for individual styles(left: Marble styles,

right: Brick styles)

In case of marble-styles, the spider-chart (figure 15) based on table 5

above shows that the majority of the reviewers considered our generated-

marble styles and marble-styles from dataset, to be of same quality, hence
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the common portion is taking the larger part of the graph (left). On the

other hand, brick-styles also share a large portion of the graph, at the same

time- a big portion from the dataset were considered good and also a decent

amount of generated brick-styles were considered bad and average as well.

Style Type VG G A B VB

Marble Generated 23.5% 36.7% 29.4% 10.4% 0.0%

Marble Real 32.3% 35.3% 22.0% 10.4% 0.0%

Brick Generated 25.0% 20.8% 27.1% 25.0% 2.1%

Brick Real 23.0% 41.6% 20.8% 14.6% 0.0%

Table 7: Review counts in percentage based on style-type. In the columns VG stands for

Very Good, G is for Good, A is for Average, B is for Bad and VB is for Very Bad

Table 7 shows percentage of collected reviews among the separate style

and type. It is observed that 89.6% of the reviews for generated-marble de-

signs were between Very Good to Average which matches the number for

real-marble design for the same range. In this major portion, most of it

came from textures that were reviewed as Good by the reviewers. And for

the generated-brick styles it is 72.9% which is less than its counter part real-

brick styles (85.4%), is also appreciable. The most review counts obtained

for generated-brick styles were of Average counts.
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5. Conclusion

Primary objective of our work is to see how well generative adversarial

networks perform to mimic the designs for ceramic tiles. Through the use of

a semi-automated pre-processing method on our collected dataset, we were

able to generate a variety of vibrant and realistic ceramic tile designs. DC-

GAN model, due to mode collapse, produced variety of colored outputs for a

distinct few texture patterns. Our findings indicate that WGAN-GP model

produced the most visually pleasing and diverse designs between the two

models. Evaluation using the FID score provided positive feedback overall

for both of the design types- keeping marble styled generated designs a bit

ahead and then response from the survey-participants in the field of ceramic

tile industry supported that outcome as well.

While the limitations of our study were largely due to hardware and

memory constraints, future research could benefit from more advanced com-

putational resources, along with using other state-of-the-art generative ar-

chitectures. It is planned to make our pre-processed datasets available in

near future. Our findings suggest that there lies significant potential for this

type of work to impact current ceramic tiles industry by semi-automating or

automating texture designing process to reduce overall production time or

cost-cutting and also to change the age-old view of the designs of ceramic

tile textures. Our work may not replace human design but it could be an

inspiration for them to produce better styled design tiles.
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