Abbott Aa (2010) The isolation of flowering time genes from lettuce to enable the manipulation of bolting time. The University of Warwick
Abe M, Kobayashi Y, Yamamoto S, et al (2005) FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science (80- ) 309:1052 LP – 1056. https://doi.org/10.1126/science.1115983
An H, Roussot C, Suárez-López P, et al (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626
Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent Induction of Arabidopsis thaliana Flowering by Elevated Growth Temperature. PLOS Genet 2:e106
Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. https://doi.org/10.1093/bioinformatics/btg112
Chen Z, Zhao W, Ge D, et al (2018) LCM-seq reveals the crucial role of LsSOC1 in heat-promoted bolting of lettuce (Lactuca sativa L.). Plant J 95:516–528. https://doi.org/10.1111/tpj.13968
Cheng X-F, Wang Z-Y (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43:758–768. https://doi.org/10.1111/j.1365-313X.2005.02491.x
Cho L-H, Pasriga R, Yoon J, et al (2018) Roles of Sugars in Controlling Flowering Time. J Plant Biol 61:121–130. https://doi.org/10.1007/s12374-018-0081-z
Coles ND, McMullen MD, Balint-Kurti PJ, et al (2010) Genetic Control of Photoperiod Sensitivity in Maize Revealed by Joint Multiple Population Analysis. Genetics 184:799 LP – 812. https://doi.org/10.1534/genetics.109.110304
Corbesier L, Vincent C, Jang S, et al (2007) FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science (80- ) 316:1030 LP – 1033. https://doi.org/10.1126/science.1141752
Covarrubias-Pazaran G (2016) Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS One 11:e0156744
Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157. https://doi.org/10.1186/s13059-015-0721-2
Fornara F, de Montaigu A, Coupland G (2010) SnapShot: Control of Flowering in Arabidopsis. Cell 141:550, 550.e1–2. https://doi.org/10.1016/j.cell.2010.04.024
Fukuda M, Matsuo S, Kikuchi K, et al (2011) Isolation and functional characterization of the FLOWERING LOCUS T homolog, the LsFT gene, in lettuce. J Plant Physiol 168:1602–1607. https://doi.org/https://doi.org/10.1016/j.jplph.2011.02.004
Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv Prepr arXiv12073907
Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535
Han R, Wong AJY, Tang Z, et al (2020) Drone phenotyping and machine learning enable discovery of loci regulating daily floral opening in lettuce. bioRxiv 2020.07.16.206953. https://doi.org/10.1101/2020.07.16.206953
Hartman Y, Hooftman DAP, Eric Schranz M, van Tienderen PH (2013a) QTL analysis reveals the genetic architecture of domestication traits in Crisphead lettuce. Genet Resour Crop Evol 60:1487–1500. https://doi.org/10.1007/s10722-012-9937-0
Hartman Y, Hooftman DAP, Uwimana B, et al (2012) Genomic regions in crop–wild hybrids of lettuce are affected differently in different environments: implications for crop breeding. Evol Appl 5:629–640. https://doi.org/10.1111/j.1752-4571.2012.00240.x
Hartman Y, Uwimana B, Hooftman DAP, et al (2013b) Genomic and environmental selection patterns in two distinct lettuce crop–wild hybrid crosses. Evol Appl 6:569–584. https://doi.org/10.1111/eva.12043
Hassidim M, Harir Y, Yakir E, et al (2009) Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 230:481–491. https://doi.org/10.1007/s00425-009-0958-7
Higashi T, Aoki K, Nagano AJ, et al (2016) Circadian Oscillation of the Lettuce Transcriptome under Constant Light and Light-Dark Conditions. Front Plant Sci 7:1114. https://doi.org/10.3389/fpls.2016.01114
Imaizumi T, Schultz TF, Harmon FG, et al (2005) FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science (80- ) 309:293 LP – 297. https://doi.org/10.1126/science.1110586
Iñigo S, Alvarez MJ, Strasser B, et al (2012) PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J 69:601–612. https://doi.org/https://doi.org/10.1111/j.1365-313X.2011.04815.x
Jang S, Marchal V, Panigrahi KCS, et al (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288
Jenni S, Truco MJ, Michelmore RW (2013) Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theor Appl Genet 126:3065–3079. https://doi.org/10.1007/s00122-013-2193-7
Johanson U, West J, Lister C, et al (2000) Molecular Analysis ofFRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time. Science (80- ) 290:344 LP – 347. https://doi.org/10.1126/science.290.5490.344
Kesseli R, Ochoa O, Michelmore R (1991) Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. sativa). Genome 34:430–436. https://doi.org/10.1139/g91-065
Kwon S, Simko I, Hellier B, et al (2013) Genome-wide association of 10 horticultural traits with expressed sequence tag-derived SNP markers in a collection of lettuce lines. Crop J 1:25–33. https://doi.org/https://doi.org/10.1016/j.cj.2013.07.014
Lang A (1965) Physiology of flower initiation. In: Differenzierung und Entwicklung/Differentiation and Development. Springer, pp 1380–1536
Lavelle DO (2009) Genetics of Candidate Genes for Developmental and Domestication-Related Traits in Lettuce. University of California, davis
Legris M, Ince YÇ, Fankhauser C (2019) Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun 10:5219. https://doi.org/10.1038/s41467-019-13045-0
Li C, Gu M, Shi N, et al (2011) Mobile FT mRNA contributes to the systemic florigen signalling in floral induction. Sci Rep 1:73. https://doi.org/10.1038/srep00073
Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Prepr arXiv13033997
Lim M-H, Kim J, Kim Y-S, et al (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16:731–740. https://doi.org/10.1105/tpc.019331
Madeira F, Park YM, Lee J, et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. https://doi.org/10.1093/nar/gkz268
Maheswaran M, Huang N, Sreerangasamy SR, McCouch SR (2000) Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breed 6:145–155. https://doi.org/10.1023/A:1009618621720
Mamo BE, Hayes RJ, Truco MJ, et al (2019) The genetics of resistance to lettuce drop (Sclerotinia spp.) in lettuce in a recombinant inbred line population from Reine des Glaces × Eruption. Theor Appl Genet 132:2439–2460. https://doi.org/10.1007/s00122-019-03365-6
Maynard L (2014) Cool season crops. https://ag.purdue.edu/hla/fruitveg/Presentations/maynard_cool-season-crops_ihc2014.pdf
Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C (2013) The Flowering Repressor SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic Background. PLOS Genet 9:e1003289
Monte E, Alonso JM, Ecker JR, et al (2003) Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 15:1962–1980. https://doi.org/10.1105/tpc.012971
Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 Suppl:S111–S130. https://doi.org/10.1105/tpc.001362
Niroula M (2017) Environmental Sensitivity of Quantitative Trait Loci for Seed Germination and Flowering Time in Lettuce (Lactuca sativa L.). University of California, Davis
Park DH, Somers DE, Kim YS, et al (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science (80- ) 285:1579–1582
Putterill J, Robson F, Lee K, et al (1995) The CONSTANS gene of arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857. https://doi.org/https://doi.org/10.1016/0092-8674(95)90288-0
Rastas P (2017) Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics 33:3726–3732. https://doi.org/10.1093/bioinformatics/btx494
Reeves PA, He Y, Schmitz RJ, et al (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176:295–307. https://doi.org/10.1534/genetics.106.069336
Reyes-Chin-Wo S, Wang Z, Yang X, et al (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 8:14953. https://doi.org/10.1038/ncomms14953
Ryder EJ (1996) Ten Lettuce Genetic Stocks with Early Flowering Genes Ef-1ef-1 and Ef-2ef-2. HortScience HortSci 31:473–475. https://doi.org/10.21273/HORTSCI.31.3.473
Sánchez-Lamas M, Lorenzo CD, Cerdán PD (2016) Bottom-up Assembly of the Phytochrome Network. PLOS Genet 12:e1006413
Sandoya G, Truco M-J, Bertier LD, et al (2020) Genetics of Partial Resistance Against Verticillium dahliae Race 2 in Wild and Cultivated Lettuce. Phytopathology®. https://doi.org/10.1094/PHYTO-09-20-0396-R
Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222. https://doi.org/10.1038/sj.emboj.7600117
Searle I, He Y, Turck F, et al (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912. https://doi.org/10.1101/gad.373506
Seki K, Komatsu K, Tanaka K, et al (2020) A CIN-like TCP transcription factor (LsTCP4) having retrotransposon insertion associates with a shift from Salinas type to Empire type in crisphead lettuce (Lactuca sativa L.). Hortic Res 7:15. https://doi.org/10.1038/s41438-020-0241-4
Song YH, Kubota A, Kwon MS, et al (2018) Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat Plants 4:824–835. https://doi.org/10.1038/s41477-018-0253-3
Sourdille P, Snape JW, Cadalen T, et al (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494. https://doi.org/10.1139/g00-013
Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037. https://doi.org/10.1007/s00018-011-0673-y
Sthapit Kandel J, Peng H, Hayes RJ, et al (2020) Genome-wide association mapping reveals loci for shelf life and developmental rate of lettuce. Theor Appl Genet 133:1947–1966. https://doi.org/10.1007/s00122-020-03568-2
Suárez-López P, Wheatley K, Robson F, et al (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120. https://doi.org/10.1038/35074138
Sukprakarn S (1985) A study of the effects of temperature and photoperiod on vegetative growth and seed production of leaf lettuce (Lactuca sativa L.) : a thesis presented in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Seed Technology. Massey University
Tasma IM, Lorenzen LL, Green DE, Shoemaker RC (2001) Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed 8:25–35. https://doi.org/10.1023/A:1011998116037
Thompson RC, Ryder EJ (1961) Descriptions and pedigrees of nine varieties of lettuce. US Department of Agriculture
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164–e164. https://doi.org/10.1093/nar/gkq603
Waycott W (1995) Photoperiodic Response of Genetically Diverse Lettuce Accessions. J Am Soc Hortic Sci jashs 120:460–467. https://doi.org/10.21273/JASHS.120.3.460
Wimmer V, Albrecht T, Auinger H-J, Schön C-C (2012) synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086–2087. https://doi.org/10.1093/bioinformatics/bts335
Zhang L, Su W, Tao R, et al (2017) RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nat Commun 8:2264. https://doi.org/10.1038/s41467-017-02445-9