BS 812-112. (1990). Testing aggregates. Methods for determination of particle shape. Elongation index. British Standard Institution, London.
BS 105.1. (1989). Testing aggregates. Methods for determination of particle shape. Flakiness index. British Standard Institution, London.
ASTM: 142/C142M-10 AC (2010). Standard Test Method for Clay Lumps and Friable Particles in Aggregates.
BS 812-112 (1990). Methods of determination of aggregate impact value (AIV).
BS 812–112 (1990). Testing aggregates. Method for determination of aggregate impact value (AIV), British Standarts Institution.
ASTM: 2845‐ 00 AD (2000). Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock, West Conshohocken, Pennsylvania, USA.
ASTM: 5731-95 AD (1995). Standart test method for determination of the point load strength index of rock.
Aboutaleb, S., Bagherpour, R., Behnia, M., & Aghababaei, M. (2017). Combination of the physical and ultrasonic tests in estimating the uniaxial compressive strength and Young’s modulus of intact limestone rocks. Geotechnical and Geological Engineering, 35(6), 3015-3023.
Akram, M., & Bakar, M. A. (2016). Correlation between uniaxial compressive strength and point load index for salt-range rocks. Pakistan Journal of Engineering and Applied Sciences.
Aldeeky, H., & Al Hattamleh, O. (2018). Prediction of engineering properties of basalt rock in Jordan using ultrasonic pulse velocity test. Geotechnical and Geological Engineering, 36(6), 3511-3525.
Ali, A. (2010). Structural Analysis of the Trans-Indus Ranges: Implications for the hydrocarbon potential of the NW Himalayas, Pakistan. NATIONAL CENTRE OF EXCELLENCE IN GEOLOGY UNIVERSITY OF PESHAWAR, PAKISTAN,
Bensted, J. (1978). δ-dicalcium silicate and its hydraulicity. Cement and Concrete Research, 8(1), 73-76.
Bieniawski, Z. (1975). The point-load test in geotechnical practice. Engineering Geology, 9(1), 1-11.
Bilqees, R., Sarwar, M. R., Haneef, M., & Khan, T. (2015). Source of cement raw material for the construction of Bhasha Dam in Gilgit Diamir District, Pakistan. Journal of Himalayan Earth Science, 48(1).
Bilqees, R., & Shah, T. (2007). Industrial applications of limestone deposits of Kohat, NWFP: A research towards the sustainability of the deposits. Biological Sciences-PJSIR, 50(5), 293-298.
Bilqees, R., Tahirkheli, T., Pirzada, N., & Abbas, S. M. (2012). Industrial applications of Abbottabad limestone; utilizing its chemical and engineering properties. Journal of Himalayan Earth Sciences, 45(1), 91.
Blisniuk, P. M., Sonder, L. J., & Lillie, R. J. (1998). Foreland normal fault control on northwest Himalayan thrust front development. Tectonics, 17(5), 766-779.
Boynton, R. S. (1980). Chemistry and Technology of Lime and Limestone (2nd ed) John Wiley & Sons, New York.
Boynton, R. S. (1980). Chemistry and technology of lime and limestone, John Wiley&Sons. Inc., New York.
Broch, E., & Franklin, J. The point-load strength test. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1972 (Vol. 9, pp. 669-676, Vol. 6): Pergamon
ASTM: C29 (2009). Standard test method for bulk density (“Unit Weight”) and voids in aggregate. American Society for Testing and Materials, Annual Book, Pennsylvania, USA.
ASTM: C88-05 (2005). Standard test method for soundness of aggregate by use of sodium sulfate or magnesium sulfate. . 4.2, 37–42.
ASTM: C127 (2012). Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate.
ASTM: C131 (2006). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.
ASTM: C150/C150M-18 (2018). Standard Specification for Portland Cement, ASTM International, West Conshohocken. Conshohoken, PA: ASTM.
ASTM: C170-16 (2016). Standard test method for compressive strength of dimension stone.
ASTM: C289 (2007). Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method), ASTM International, West Conshohocken. Conshohoken, PA: ASTM.
ASTM: C295 (2012). Standard Guide for Petrographic Examination of aggregrates for concret, ASTM International, West Conshohoken, .
Cargill, J. S., & Shakoor, A. Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1990 (Vol. 27, pp. 495-503, Vol. 6): Elsevier
Chen, F. H. (2012). Foundations on expansive soils (Vol. 12): Elsevier.
D4791, A. (2010). Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate.
D5873-00, A. (2000). Standard test method for determination of rock hardness by rebound hammer method. American Society for Testing and Materials (ASTM). West Conshohoken.
Derucher, K. N., & Heins, C. P. (1981). Materials for civil and highway engineers.
Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures.
Ferraris, C. F., & Ferraris, C. F. (1995). Alkali-silica reaction and high performance concrete.
French, W. (1991). Concrete petrography: a review. Quarterly Journal of Engineering Geology and Hydrogeology, 24(1), 17-48.
Galetakis, M., Alevizos, G., & Leventakis, K. (2012). Evaluation of fine limestone quarry by-products, for the production of building elements – An experimental approach. Construction and Building Materials, 26(1), 122-130, doi:https://doi.org/10.1016/j.conbuildmat.2011.05.011.
Grattan-Bellew, P., & Chan, G. (2013). Comparison of the morphology of alkali–silica gel formed in limestones in concrete affected by the so-called alkali–carbonate reaction (ACR) and alkali–silica reaction (ASR). Cement and Concrete Research, 47, 51-54.
Haramy, K., & DeMarco, M. Use of the Schmidt hammer for rock and coal testing. In The 26th US Symposium on Rock Mechanics (USRMS), 1985: American Rock Mechanics Association
Hartley, A. (1974). A review of the geological factors influencing the mechanical properties of road surface aggregates. Quarterly Journal of Engineering Geology, 7(1), 69-100.
Hobbs, D. W. (1988). Alkali-silica reaction in concrete: Thomas Telford Publishing.
Hussain, V., Bilqees, R., & Nasreen, S. (1989). Petrology and industrial application of Nizampur Limestones, NWFP, Pakistan. Pakistan Journal of Scientific and Industrial Research, 32(11), 775-779.
Insley, H. (1950). Microscopy of Ceramics and Cements. New York: Academic Press Inc.
Irfan, T. (1996). Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 29(1), 5-35.
ISRM (2008). ISRM suggested method for determination of the Schmidt hammer rebound hardness: revised version. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014 (pp. 25-33): Springer.
Jan, N., Bilqees, R., Riaz, M., Noor, S., & Younas, M. (2009). Study of limestone from Nizampur area for industrial utilization. JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 31(1), 16-20.
Khanlari, G., & Naseri, F. (2018). Prediction of aggregate modified index (AMI) using geomechanical properties of limestones. Bulletin of Engineering Geology and the Environment, 77(2), 803-814.
Kurtuluş, C., Irmak, T. S., & Sertçelik, I. (2010). Physical and mechanical properties of Gokceada: Imbros (NE Aegean Sea) island andesites. Bulletin of Engineering Geology and the Environment, 69(2), 321-324.
Lea, F. (1970). The Chemistry of Cement and Concrete, Ed. Arnold, London, 243.
Lees, G., & Kennedy, C. K. (1975). Quality, shape and degradation of aggregates. Quarterly Journal of Engineering Geology, 8(3), 193-209.
López-Buendía, A., Climent, V., & Verdú, P. (2006). Lithological influence of aggregate in the alkali-carbonate reaction. Cement and concrete research, 36(8), 1490-1500.
Malahat, F., Naseer, A., & Bilqees, R. (2018). Engineering and Mineralogical Assessment of Coarse Aggregates used in District Mardan. Journal of Himalayan Earth Sciences, 51(1), 34-43.
Malhotra, V. (1976). Testing hardened concrete: Non-destructive methods, ACI Monograph No. 9, ACI: Iowa State University Press, Ames, Iowa.
Mehta, P. K. (1986). Concrete : structure, properties, and materials. Englewood Cliffs, N.J.: Prentice-Hall.
Naeem, M., Khalid, P., Sanaullah, M., & ud Din, Z. (2014). Physio-mechanical and aggregate properties of limestones from Pakistan. Acta Geodaetica et Geophysica, 49(3), 369-380.
Nizami, A., & Sheikh, R. (2009). Sedimentology of the Middle Jurassic Samana Suk Formation, Makarwal Section, Surghar Range, Trans Indus Ranges, Pakistan. Geological Bulletin of the Punjab University, 44, 11-25.
Nizami, A. R. (2009). Microfacies analysis and diagenetic settings of the middle Jurassic Samana Suk Formation, Sheikh Budin Hill section, trans Indus ranges-Pakistan. Geol. Bull. Punjab Univ, 44, 69-84.
O'Rourke, J. (1989). Rock index properties for geoengineering in underground development. Mining Engineering (Littleton, Colorado), 41(2), 106-109.
Oates, J. (1998). Lime and limestone: chemistry and technology, production and uses. WileyVCH. Weinheim.
Oats, J. A. H. (1998). Lime and Limestone: Chemistry and Technology, Production and Uses. Willey - VCH Verag GmbH, Germany.
Ramsay, D., Dhir, R., & Spence, I. (1974). The role of rock and clast fabric in the physical performance of crushed-rock aggregate. Engineering Geology, 8(3), 267-285.
Read, J., Thornton, P., & Regan, W. A rational approach to the point load test. In Third Australia-New Zealand conference on Geomechanics: Wellington, May 12-16, 1980, 1980 (pp. 2): Institution of Professional Engineers New Zealand
Rehman, S. U., Ahmed, M., Hasan, F., Hassan, S., Rehman, F., & Ullah, M. F. (2018). Aggregate suitability studies of Middle Jurassic Samana Suk Formation exposed at Sheikh Budin Hill, Marwat Range, Pakistan. Journal of Biodiversity and Environmental Sciences, 12(3), 159-168.
Sajid, M., Coggan, J., Arif, M., Andersen, J., & Rollinson, G. (2016). Petrographic features as an effective indicator for the variation in strength of granites. Engineering Geology, 202, 44-54.
Salah, H., Omar, M., & Shanableh, A. (2014). Estimating unconfined compressive strength of sedimentary rocks in United Arab Emirates from point load strength index. Journal of Applied Mathematics and Physics, 2(06), 296-303.
Sarkar, K., Vishal, V., & Singh, T. (2012). An empirical correlation of index geomechanical parameters with the compressional wave velocity. Geotechnical and Geological Engineering, 30(2), 469-479.
Selby, M. (1980). A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie Stuttgart, 24(1), 31-51.
Shalabi, F. I., Cording, E. J., & Al-Hattamleh, O. H. (2007). Estimation of rock engineering properties using hardness tests. Engineering Geology, 90(3-4), 138-147.
Sharma, P., & Singh, T. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, 67(1), 17-22.
Sheorey, P. (1984). Schmidt hammer rebound data for estimation of large scale in situ coal strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.;(United States), 21(1).
Singh, R., Hassani, F., & Elkington, P. The application of strength and deformation index testing to the stability assessment of coal measures excavations. In The 24th US Symposium on Rock Mechanics (USRMS), 1983: American Rock Mechanics Association
Smith MR, C. L. (2001). Aggregates: sand, gravel and crushed rock aggregates for construction purposes (Vol. 17). London: Geological Society.
Smith, R. C. (1979). Materials of construction.
Tandon, R. S., & Gupta, V. (2015). Estimation of strength characteristics of different Himalayan rocks from Schmidt hammer rebound, point load index, and compressional wave velocity. Bulletin of Engineering Geology and the Environment, 74(2), 521-533.
Yagiz, S. (2011). P-wave velocity test for assessment of geotechnical properties of some rock materials. Bulletin of Materials Science, 34(4), 947.