[1] T. Anderson and I. Mudawar, "Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid," Journal of Heat Transfer, vol. 111, pp. 752-759, 1989.
[2] I. Mouromtseff and H. Kozanowski, "Comparative analysis of water-cooled tubes as class B audio amplifiers," Proceedings of the Institute of Radio Engineers, vol. 23, pp. 1224-1251, 1935.
[3] S. S. Kutateladze and . " Fundamentals of Heat Transfer,," Academic Press, New York, 1963.
[4] A. Bejan and A. D. Kraus, Heat transfer handbook vol. 1: John Wiley & Sons, 2003.
[5] G. Paul, M. Chopkar, I. Manna, and P. Das, "Techniques for measuring the thermal conductivity of nanofluids: a review," Renewable and Sustainable Energy Reviews, vol. 14, pp. 1913-1924, 2010.
[6] S. Jun, J. Kim, S. M. You, and H. Y. Kim, "Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water," International Journal of Heat and Mass Transfer, vol. 103, pp. 277-284, 2016.
[7] S. K. An, D.-Y.; Lee, J.-G.; Jo, H.S.; Kim, M.; Al-Deyab, S.S.; Choi, J.; Yoon, S.S, "Supersonically sprayed reduced graphene oxide film to enhance critical heat flux in pool boiling," Int. J. Heat Mass Transf, vol. 98, pp. 124–130, 2016.
[8] S. K. Das, D.S.; Bhaumik., S, "Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface," Appl. Therm. Eng, vol. 96, pp. 555–567, 2016.
[9] K. S. V. S. Z. Protich, A. Jaikumar, S. G. Kandlikar, and P. Wong, "Electrochemical Deposition of Copper in Graphene Quantum Dot Bath: Pool Boiling Enhancement J. Electrochem. Soc, vol. 163(6), pp. 166-E172, . 2016
[10] T. J. Dinh N., Theofanous T, "Hydrodynamic and physico-chemical nature of burnout in pool boiling," Proc. 5th Int. Conf. on Multiphase Flow,Yokohama, Japan., 2004.
[11] S. A. Khan, " Study of CNF Coating for Pool-Boiling and Condensation. " InProceedings of the International Conference on Sustainable Energy and Environmental Protection, Changsha,China, vol. 23-25, pp. 27–30, June 2017.
[12] B. J. Zhang, "Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling," International Journal of Heat and Mass Transfer, vol. 55 pp. 7487–7498, 2012.
[13] S. D. e. al, "Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface," Applied Thermal Engineering vol. 96, pp. 555–567, 2016.
[14] B. Shi, "Pool boiling heat transfer enhancement with copper nanowire arrays "Applied Thermal Engineering vol. 75 pp. 115 -121, 2015.
[15] E. Demir, "Effect of silicon nanorod length on horizontal nanostructured plates in pool boiling heat transfer with water" International Journal of Thermal Sciences vol. 82, pp. 111-121, 2014.
[16] S. Sinha-Ray, "Pool boiling of Novec 7300 and DI water on nano-textured heater covered with supersonically-blown or electrospun polymer nanofibers," International Journal of Heat and Mass Transfer vol. 106, pp. 482–490, 2017.
[17] S. R. SRIRAMAN, "POOL BOILING ON NANO-FINNED SURFACES ", Office of Graduate Studies of Texas A&M University, December 2007
[18] C. D. Yunhyeok Im , Seung S. Lee & Yogendra Joshi "Flower-Like CuO Nanostructures for Enhanced Boiling "Nanoscale and Microscale Thermophysical Engineering vol. 16:3, pp. 145-153, 2012.
[19] J. P. McHale, "Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces with and Without Carbon Nanotubes " Nanoscale and Microscale Thermophysical Engineering vol. 15, pp. 133-150, 2011.
[20] S. Das, D. Kumar, and S. Bhaumik, "Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface," Applied Thermal Engineering, vol. 96, pp. 555-567, 2016.
[21] H. M. Ali, M. M. Generous, F. Ahmad, and M. Irfan, "Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluids," Applied Thermal Engineering, vol. 113, pp. 1146-1151, 2017.
[22] F. R. Dareh, M. Haghshenasfard, M. N. Esfahany, and H. S. Jazi, "Experimental investigation of time and repeated cycles in nucleate pool boiling of alumina/water nanofluid on polished and machined surfaces," Heat and Mass Transfer, vol. 54, pp. 1653-1668, 2018.
[23] A. Jaikumar, A. Rishi, A. Gupta, and S. G. Kandlikar, "Microscale morphology effects of copper–graphene oxide coatings on pool boiling characteristics," Journal of Heat Transfer, vol. 139, p. 111509, 2017.
[24] A. Jaikumar, K. S. Santhanam, S. G. Kandlikar, I. Raya, and P. Raghupathi, "Electrochemical deposition of copper on graphene with high heat transfer coefficient," ECS Transactions, vol. 66, pp. 55-64, 2015.
[25] G. H. Seo, H. Hwang, J. Yoon, T. Yeo, H. H. Son, U. Jeong, et al., "Enhanced critical heat flux with single-walled carbon nanotubes bonded on metal surfaces," Experimental Thermal and Fluid Science, vol. 60, pp. 138-147, 2015.
[26] E. J. T. Pialago, O. K. Kwon, J. S. Jin, and C. W. Park, "Nucleate pool boiling of R134a on cold sprayed Cu–CNT–SiC and Cu–CNT–AlN composite coatings," Applied Thermal Engineering, vol. 103, pp. 684-694, 2016.
[27] M. Ray, S. Deb, and S. Bhaumik, "Pool boiling heat transfer of refrigerant R-134a on TiO2 nano wire arrays surface," Applied Thermal Engineering, vol. 107, pp. 1294-1303, 2016.
[28] H. S. Jo, T. G. Kim, J.-G. Lee, M.-W. Kim, H. G. Park, S. C. James, et al., "Supersonically sprayed nanotextured surfaces with silver nanowires for enhanced pool boiling," International Journal of Heat and Mass Transfer, vol. 123, pp. 397-406, 2018.
[29] S. Lee, G. H. Seo, S. Lee, U. Jeong, S. J. Lee, S. J. Kim, et al., "Layer-by-layer carbon nanotube coatings for enhanced pool boiling heat transfer on metal surfaces," Carbon, vol. 107, pp. 607-618, 2016.
[30] S. S.-R. S. Jun, A.L. Yarin, "Pool boiling on nano-textured surfaces," Int. J.Heat Mass Transfer . vol. 62, pp. 99-111, 2013.
[31] M. W. L. S. Sinha-Ray, S. Sinha-Ray, S. An, B. Pourdeyhimi, S.S. Yoon, A.L. and Yarin, "Supersonic nanoblowing: a new ultra-stiff phase of nylon 6 in 20–50 nm confinement," J. Mater. Chem, pp. 3491-3498., 2013.
[32] S. S.-R. R.P. Sahu, S. Sinha-Ray, A.L. Yarin, " Pool boiling on nano-textured surfaces comprised of electrically-assisted supersonically solution-blown,copper-plated nanofibers: experiments and theory,," Int. J. Heat Mass Transfer vol. 87, pp. 521–535, 2015.
[33] J. Huang and T. You, "Electrospun nanofibers: from rational design, fabrication to electrochemical sensing applications," in Advances in nanofibers, ed: IntechOpen, 2013.
[34] S. J. K. a. F. McClintock, "Describing Uncertainties in Single-sample Experiments," Mech. Engineering, vol. 75, pp. 3–8, 1953.
[35] N. A. Barakat, M. H. El-Newehy, A. S. Yasin, Z. K. Ghouri, and S. S. Al-Deyab, "Ni&Mn nanoparticles-decorated carbon nanofibers as effective electrocatalyst for urea oxidation," Applied Catalysis A: General, vol. 510, pp. 180-188, 2016.
[36] N. A. Barakat, M. Motlak, A. A. Elzatahry, K. A. Khalil, and E. A. Abdelghani, "NixCo1− x alloy nanoparticle-doped carbon nanofibers as effective non-precious catalyst for ethanol oxidation," international journal of hydrogen energy, vol. 39, pp. 305-316, 2014.
[37] N. G. H. Vachon R.I, Tanger G.E, "Evaluation of constants for the Rohsenow pool-boiling correlation," J. Heat Transfer, vol. 90, pp. 239-246, 1968.
[38] N. Zuber, "Hydrodynamic Aspects of Boiling Heat Transfer " Physicsand Mathematics, US Atomic Energy Commission, 1959.
[39] S. G. Kandlikar, "A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation," J. Heat Transfer vol. 123 pp. 1071–1079., 2001.
[40] T. Zhang, X. Wu, and T. Luo, "Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties," The Journal of Physical Chemistry C, vol. 118, pp. 21148-21159, 2014.
[41] R. Rioboo, M. Marengo, S. Dall’Olio, M. Voué, and J. De Coninck, "An innovative method to control the incipient flow boiling through grafted surfaces with chemical patterns," Langmuir, vol. 25, pp. 6005-6009, 2009.
[42] B. Bourdon, R. Rioboo, M. Marengo, E. Gosselin, and J. De Coninck, "Influence of the wettability on the boiling onset," Langmuir, vol. 28, pp. 1618-1624, 2012.
[43] B. Bourdon, P. Di Marco, R. Riobóo, M. Marengo, and J. De Coninck, "Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces," International Communications in Heat and Mass Transfer, vol. 45, pp. 11-15, 2013.