1. Wang, H., and Dey, S. K. (2006) Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199
2. Bazer, F. W. (2011) Uterine receptivity to implantation of blastocysts in mammals. Front. Biosci. S3, 184
3. Cha, J., Sun, X., and Dey, S. K. (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat. Med. 18, 1754–1767
4. Zinaman, M. J., Clegg, E. D., Brown, C. C., O’Connor, J., and Selevan, S. G. (1996) Estimates of human fertility and pregnancy loss. Fertil. Steril. 65, 503–509
5. Norwitz, E. R., Schust, D. J., and Fisher, S. J. (2001) Implantation and the Survival of Early Pregnancy. N. Engl. J. Med. 345, 1400–1408
6. Edwards, R. G. (2006) Human implantation: the last barrier in assisted reproduction technologies? Reprod. Biomed. Online. 13, 887–904
7. Zhang, S., Lin, H., Kong, S., Wang, S., Wang, H., Wang, H., and Armant, D. R. (2013) Physiological and molecular determinants of embryo implantation. Mol. Aspects Med. 34, 939–980
8. Morel, O., Laporte-Broux, B., Tarrade, A., and Chavatte-Palmer, P. (2012) The use of ruminant models in biomedical perinatal research. Theriogenology. 78, 1763–1773
9. Lee, K. Y., and DeMayo, F. J. (2004) Animal models of implantation. Reproduction. 128, 679–695
10. Martal, J. L., Chêne, N. M., Huynh, L. P., L’Haridon, R. M., Reinaud, P. B., Guillomot, M. W., Charlier, M. A., and Charpigny, S. Y. (1998) IFN-tau: A novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie. 80, 755–777
11. Bazer, F. W. (1992) Mediators of Maternal Recognition of Pregnancy in Mammals. Exp. Biol. Med. 199, 373–384
12. Spencer, T. E., Johnson, G. A., Bazer, F. W., and Burghardt, R. C. (2004) Implantation mechanisms: Insights from the sheep. Reproduction. 128, 657–668
13. Spencer, T. E., Johnson, G. A., Bazer, F. W., Burghardt, R. C., and Palmarini, M. (2007) Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod. Fertil. Dev. 19, 65
14. Choi, Y., Johnson, G. A., Burghardt, R. C., Berghman, L. R., Joyce, M. M., Taylor, K. M., David Stewart, M., Bazer, F. W., and Spencer, T. E. (2001) Interferon Regulatory Factor-Two Restricts Expression of Interferon-Stimulated Genes to the Endometrial Stroma and Glandular Epithelium of the Ovine Uterus1. Biol. Reprod. 65, 1038–1049
15. Rosenfeld, C. S., Han, C.-S., Alexenko, A. P., Spencer, T. E., and Roberts, R. M. (2002) Expression of Interferon Receptor Subunits, IFNAR1 and IFNAR2, in the Ovine Uterus1. Biol. Reprod. 67, 847–853
16. Chen, Y., Antoniou, E., Liu, Z., Hearne, L. B., and Roberts, R. M. (2007) A microarray analysis for genes regulated by interferon-τ in ovine luminal epithelial cells. Reproduction. 134, 123–135
17. Oliveira, J. F., Henkes, L. E., Ashley, R. L., Purcell, S. H., Smirnova, N. P., Veeramachaneni, D. N. R., Anthony, R. V., and Hansen, T. R. (2008) Expression of Interferon (IFN)-Stimulated Genes in Extrauterine Tissues during Early Pregnancy in Sheep Is the Consequence of Endocrine IFN-τ Release from the Uterine Vein. Endocrinology. 149, 1252–1259
18. Dorniak, P., Welsh, T. H., Bazer, F. W., and Spencer, T. E. (2012) Endometrial HSD11B1 and Cortisol Regeneration in the Ovine Uterus: Effects of Pregnancy, Interferon Tau, and Prostaglandins1. Biol. Reprod. 10.1095/biolreprod.111.097063
19. Spencer, T. E., Bartol, F. F., Bazer, F. W., Johnson, G. A., and Joyce, M. M. (1999) Identification and Characterization of Glycosylation-Dependent Cell Adhesion Molecule 1-Like Protein Expression in the Ovine Uterus. Biol. Reprod. 60, 241–250
20. Bauersachs, S., Ulbrich, S. E., Zakhartchenko, V., Minten, M., Reichenbach, M., Reichenbach, H.-D., Blum, H., Spencer, T. E., and Wolf, E. (2009) The endometrium responds differently to cloned versus fertilized embryos. Proc. Natl. Acad. Sci. U. S. A. 106, 5681–6
21. Mansouri-Attia, N., Sandra, O., Aubert, J., Degrelle, S., Everts, R. E., Giraud-Delville, C., Heyman, Y., Galio, L., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., and Renard, J.-P. (2009) Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl. Acad. Sci. 106, 5687–5692
22. Biase, F. H., Hue, I., Dickinson, S. E., Jaffrezic, F., Laloe, D., Lewin, H. A., and Sandra, O. (2019) Fine-tuned adaptation of embryo–endometrium pairs at implantation revealed by transcriptome analyses in Bos taurus. PLoS Biol. 17, 1–20
23. Nie, J., An, L., Miao, K., Hou, Z., Yu, Y., Tan, K., Sui, L., He, S., Liu, Q., Lei, X., Wu, Z., and Tian, J. (2013) Comparative analysis of dynamic proteomic profiles between in vivo and in vitro produced mouse embryos during postimplantation period. J. Proteome Res. 12, 3843–3856
24. Chen, Z., Hagen, D. E., Elsik, C. G., Ji, T., Morris, C. J., Moon, L. E., and Rivera, R. M. (2015) Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proc. Natl. Acad. Sci. U. S. A. 112, 4618–4623
25. Tan, K., An, L., Miao, K., Ren, L., Hou, Z., Tao, L., Zhang, Z., Wang, X., Xia, W., Liu, J., Wang, Z., Xi, G., Gao, S., Sui, L., Zhu, D.-S., Wang, S., Wu, Z., Bach, I., Chen, D., and Tian, J. (2016) Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proc. Natl. Acad. Sci. 113, 3197–3202
26. Malo Estepa, I., Tinning, H., Rosas Vasconcelos, E. J., Fernandez-Fuertes, B., Sánchez, J. M., Burns, G. W., Spencer, T. E., Lonergan, P., and Forde, N. (2020) Protein Synthesis by Day 16 Bovine Conceptuses during the Time of Maternal Recognition of Pregnancy. Int. J. Mol. Sci. 21, 2870
27. Wang, Y., Wang, C., Hou, Z., Miao, K., Zhao, H., Wang, R., Guo, M., Wu, Z., Tian, J., and An, L. (2013) Comparative analysis of proteomic profiles between endometrial caruncular and intercaruncular areas in ewes during the peri-implantation period. J. Anim. Sci. Biotechnol. 4, 39
28. Moraes, J. G. N., Behura, S. K., Geary, T. W., and Spencer, T. E. (2020) Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids. Biol. Reprod. 102, 456–474
29. Moraes, J. G. N., Behura, S. K., Bishop, J. V., Hansen, T. R., Geary, T. W., and Spencer, T. E. (2020) Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites†. Biol. Reprod. 102, 571–587
30. Biase, F. H., Rabel, C., Guillomot, M., Hue, I., Andropolis, K., Olmstead, C. A., Oliveira, R., Wallace, R., Le Bourhis, D., Richard, C., Campion, E., Chaulot-Talmon, A., Giraud-Delville, C., Taghouti, G., Jammes, H., Renard, J. P., Sandra, O., and Lewin, H. A. (2016) Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium. Proc. Natl. Acad. Sci. U. S. A. 113, 14492–14501
31. Yang, Q., Fu, W., Wang, Y., Miao, K., Zhao, H., Wang, R., Guo, M., Wang, Z., Tian, J., and An, L. (2020) The proteome of IVF-induced aberrant embryo-maternal crosstalk by implantation stage in ewes. J. Anim. Sci. Biotechnol. 11, 7
32. Moraes, J. G. N., Behura, S. K., Geary, T. W., Hansen, P. J., Neibergs, H. L., and Spencer, T. E. (2018) Uterine influences on conceptus development in fertility-classified animals. Proc. Natl. Acad. Sci. 115, E1749–E1758
33. Ramilowski, J. A., Goldberg, T., Harshbarger, J., Kloppmann, E., Lizio, M., Satagopam, V. P., Itoh, M., Kawaji, H., Carninci, P., Rost, B., and Forrest, A. R. R. (2015) A draft network of ligand–receptor-mediated multicellular signalling in human. Nat. Commun. 6, 7866
34. Kumar, M. P., Du, J., Lagoudas, G., Jiao, Y., Sawyer, A., Drummond, D. C., Lauffenburger, D. A., and Raue, A. (2018) Analysis of Single-Cell RNA-Seq Identifies Cell-Cell Communication Associated with Tumor Characteristics. Cell Rep. 25, 1458-1468.e4
35. Vento-Tormo, R., Efremova, M., Botting, R. A., Turco, M. Y., Vento-Tormo, M., Meyer, K. B., Park, J.-E., Stephenson, E., Polański, K., Goncalves, A., Gardner, L., Holmqvist, S., Henriksson, J., Zou, A., Sharkey, A. M., Millar, B., Innes, B., Wood, L., Wilbrey-Clark, A., Payne, R. P., Ivarsson, M. A., Lisgo, S., Filby, A., Rowitch, D. H., Bulmer, J. N., Wright, G. J., Stubbington, M. J. T., Haniffa, M., Moffett, A., and Teichmann, S. A. (2018) Single-cell reconstruction of the early maternal–fetal interface in humans. Nature. 563, 347–353
36. Spencer, T. ., Burghardt, R. ., Johnson, G. ., and Bazer, F. . (2004) Conceptus signals for establishment and maintenance of pregnancy. Anim. Reprod. Sci. 82–83, 537–550
37. Wan, P.-C., Bao, Z.-J., Wu, Y., Yang, L., Hao, Z.-D., Yang, Y.-L., Shi, G.-Q., Liu, Y., and Zeng, S.-M. (2011) αvβ3 Integrin may Participate in Conceptus Attachment by Regulating Morphologic Changes in the Endometrium during Peri-implantation in Ovine. Reprod. Domest. Anim. 46, 840–847
38. Song, G., Satterfield, M. C., Kim, J., Bazer, F. W., and Spencer, T. E. (2008) Gastrin-Releasing Peptide (GRP) in the Ovine Uterus: Regulation by Interferon Tau and Progesterone1. Biol. Reprod. 79, 376–386
39. Bazer, F. W., Spencer, T. E., and Ott, T. L. (1997) Interferon tau: A novel pregnancy recognition signal. Am. J. Reprod. Immunol. 37, 412–420
40. WIMSATT, W. A. (1950) New histological observations on the placenta of the sheep. Am. J. Anat. 10.1002/aja.1000870304
41. Bazer, F. W. (1975) Uterine protein secretions: Relationship to development of the conceptus. J. Anim. Sci. 10.2527/jas1975.4151376x
42. TABIBZADEH, S. (1991) Human Endometrium: An Active Site of Cytokine Production and Action. Endocr. Rev. 12, 272–290
43. Li, F., Redick, S. D., Erickson, H. P., and Moy, V. T. (2003) Force Measurements of the α5β1 Integrin–Fibronectin Interaction. Biophys. J. 84, 1252–1262
44. Groulx, J. F., Gagné, D., Benoit, Y. D., Martel, D., Basora, N., and Beaulieu, J. F. (2011) Collagen VI is a basement membrane component that regulates epithelial cell-fibronectin interactions. Matrix Biol. 10.1016/j.matbio.2011.03.002
45. Lefebvre, T., Rybarczyk, P., Bretaudeau, C., Vanlaeys, A., Cousin, R., Brassart-Pasco, S., Chatelain, D., Dhennin-Duthille, I., Ouadid-Ahidouch, H., Brassart, B., and Gautier, M. (2020) TRPM7/RPSA Complex Regulates Pancreatic Cancer Cell Migration. Front. Cell Dev. Biol. 10.3389/fcell.2020.00549
46. Zhao, H., Sui, L., Miao, K., An, L., Wang, D., Hou, Z., Wang, R., Guo, M., Wang, Z., Xu, J., Wu, Z., and Tian, J. (2015) Comparative analysis between endometrial proteomes of pregnant and non-pregnant ewes during the peri-implantation period. J. Anim. Sci. Biotechnol. 6, 1–14
47. Singh, H., and Aplin, J. D. (2009) Adhesion molecules in endometrial epithelium: Tissue integrity and embryo implantation. J. Anat. 215, 3–13
48. Leese, H. J. (1988) The formation and function of oviduct fluid. Reproduction. 82, 843–856
49. Brooks, K., Burns, G. W., Moraes, J. G. N., and Spencer, T. E. (2016) Analysis of the Uterine Epithelial and Conceptus Transcriptome and Luminal Fluid Proteome During the Peri-Implantation Period of Pregnancy in Sheep. Biol. Reprod. 95, 88–88
50. Dobrinsky, J. R., Johnson, L. A., and Rath, D. (1996) Development of a Culture Medium (BECM-3) for Porcine Embryos: Effects of Bovine Serum Albumin and Fetal Bovine Serum on Embryo Development. Biol. Reprod. 55, 1069–1074
51. Ruane, P. T., Berneau, S. C., Koeck, R., Watts, J., Kimber, S. J., Brison, D. R., Westwood, M., and Aplin, J. D. (2017) Apposition to endometrial epithelial cells activates mouse blastocysts for implantation. Mol. Hum. Reprod. 23, 617–627
52. Berneau, S. C., Ruane, P. T., Brison, D. R., Kimber, S. J., Westwood, M., and Aplin, J. D. (2019) Investigating the role of CD44 and hyaluronate in embryo-epithelial interaction using an in vitro model. Mol. Hum. Reprod. 25, 265–273
53. Minadakis, G., Zachariou, M., Oulas, A., and Spyrou, G. M. (2019) PathwayConnector: finding complementary pathways to enhance functional analysis. Bioinformatics. 35, 889–891
54. Merkle, S., and Pretsch, W. (1992) A glucosephosphate isomerase (GPI) null mutation in Mus musculus: evidence that anaerobic glycolysis is the predominant energy delivering pathway in early post-implantation embryos. Comp. Biochem. Physiol. Part B Comp. Biochem. 101, 309–314
55. Kelly, A., and West, J. D. (1996) Genetic evidence that glycolysis is necessary for gastrulation in the mouse. Dev. Dyn. 207, 300–308
56. Kramer, A. C., Steinhauser, C. B., Gao, H., Seo, H., McLendon, B. A., Burghardt, R. C., Wu, G., Bazer, F. W., and Johnson, G. A. (2020) Steroids Regulate SLC2A1 and SLC2A3 to Deliver Glucose Into Trophectoderm for Metabolism via Glycolysis. Endocrinology. 161, 1–19
57. Simintiras, C. A., Sánchez, J. M., McDonald, M., O’Callaghan, E., Aburima, A. A., and Lonergan, P. (2021) Conceptus metabolomic profiling reveals stage-specific phenotypes leading up to pregnancy recognition in cattle†. Biol. Reprod. 104, 1022–1033
58. Smith, D. G., and Sturmey, R. G. (2013) Parallels between embryo and cancer cell metabolism. Biochem. Soc. Trans. 41, 664–669
59. Gardner, D. K. (2015) Lactate production by the mammalian blastocyst: Manipulating the microenvironment for uterine implantation and invasion? BioEssays. 37, 364–371
60. Hu, W., Liang, Y. X., Luo, J. M., Gu, X. W., Chen, Z. C., Fu, T., Zhu, Y. Y., Lin, S., Diao, H. L., Jia, B., and Yang, Z. M. (2019) Nucleolar stress regulation of endometrial receptivity in mouse models and human cell lines. Cell Death Dis. 10.1038/s41419-019-2071-6
61. Gu, X. W., Yang, Y., Li, T., Chen, Z. C., Fu, T., Pan, J. M., Ou, J. P., and Yang, Z. M. (2019) ATP mediates the interaction between human blastocyst and endometrium. Cell Prolif. 10.1111/cpr.12737
62. Belt, J. A., Thomas, J. A., Buchsbaum, R. N., and Racker, E. (1979) Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry. 18, 3506–3511
63. Payen, V. L., Mina, E., Van Hée, V. F., Porporato, P. E., and Sonveaux, P. (2020) Monocarboxylate transporters in cancer. Mol. Metab. 33, 48–66
64. Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., Ding, J., Czyz, D., Hu, R., Ye, Z., He, M., Zheng, Y. G., Shuman, H. A., Dai, L., Ren, B., Roeder, R. G., Becker, L., and Zhao, Y. (2019) Metabolic regulation of gene expression by histone lactylation. Nature. 574, 575–580
65. Leitao, B., Jones, M. C., Fusi, L., Higham, J., Lee, Y., Takano, M., Goto, T., Christian, M., Lam, E. W. ‐F., and Brosens, J. J. (2010) Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals. FASEB J. 24, 1541–1551
66. Wu, J., Hansen, J. M., Hao, L., Taylor, R. N., and Sidell, N. (2011) Retinoic acid stimulation of VEGF secretion from human endometrial stromal cells is mediated by production of reactive oxygen species. J. Physiol. 589, 863–875
67. Hayes, J. D., and Dinkova-Kostova, A. T. (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199–218
68. Armant, D. R. (2011) Life and death responses to trophinin-mediated adhesion during blastocyst implantation. Cell Cycle. 10, 579–578
69. Al-Gubory, K. H., and Garrel, C. (2012) Antioxidative signalling pathways regulate the level of reactive oxygen species at the endometrial–extraembryonic membranes interface during early pregnancy. Int. J. Biochem. Cell Biol. 44, 1511–1518
70. Al-Gubory, K. H., Faure, P., and Garrel, C. (2017) Different enzymatic antioxidative pathways operate within the sheep caruncular and intercaruncular endometrium throughout the estrous cycle and early pregnancy. Theriogenology. 99, 111–118
71. Canestrari, F., Buoncristiani, U., Galli, F., Giorgini, A., Albertini, M. C., Carobi, C., Pascucci, M., and Bossù, M. (1995) Redox state, antioxidative activity and lipid peroxidation in erythrocytes and plasma of chronic ambulatory peritoneal dialysis patients. Clin. Chim. Acta. 234, 127–136
72. Kim, Y.-J. (2007) Antimelanogenic and Antioxidant Properties of Gallic Acid. Biol. Pharm. Bull. 30, 1052–1055
73. Sui, L., An, L., Tan, K., Wang, Z., Wang, S., Miao, K., Ren, L., Tao, L., He, S., Yu, Y., Nie, J., Liu, Q., Xing, L., Wu, Z., Hou, Z., and Tian, J. (2014) Dynamic Proteomic Profiles of In Vivo- and In Vitro-Produced Mouse Postimplantation Extraembryonic Tissues and Placentas1. Biol. Reprod. 91, 1–16
74. Carson, D. D., Lagow, E., Thathiah, A., Al-Shami, R., Farach-Carson, M. C., Vernon, M., Yuan, L., Fritz, M. A., and Lessey, B. (2002) Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol. Hum. Reprod. 8, 871–9
75. Hu, S., Yao, G., Wang, Y., Xu, H., Ji, X., He, Y., Zhu, Q., Chen, Z., and Sun, Y. (2014) Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J. Clin. Endocrinol. Metab. 99, E2744–E2753
76. Romero, J. J., Liebig, B. E., Broeckling, C. D., Prenni, J. E., and Hansen, T. R. (2017) Pregnancy-induced changes in metabolome and proteome in ovine uterine flushings. Biol. Reprod. 97, 273–287
77. Mamo, S., Mehta, J. P., Forde, N., McGettigan, P., and Lonergan, P. (2012) Conceptus-endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol. Reprod. 87, 6, 1–9
78. Chae, J.-I., Kim, J., Lee, S. G., Jeon, Y.-J., Kim, D.-W., Soh, Y., Seo, K. S., Lee, H. K., Choi, N.-J., Ryu, J., Kang, S., Cho, S.-K., Lee, D.-S., Chung, H. M., and Koo, and D.-B. (2011) Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy. Proteome Sci. 9, 41
79. Kaneko, Y., Murphy, C. R., and Day, M. L. (2014) Calpain 2 activity increases at the time of implantation in rat uterine luminal epithelial cells and administration of calpain inhibitor significantly reduces implantation sites. Histochem. Cell Biol. 141, 423–430
80. Lessey, B. A. (2002) Adhesion molecules and implantation. J. Reprod. Immunol. 55, 101–112
81. Xie, K. M., Hou, X. F., Li, M. Q., and Li, D. J. (2010) NME1 at the human maternal-fetal interface downregulates titin expression and invasiveness of trophoblast cells via MAPK pathway in early pregnancy. Reproduction. 139, 799–808
82. Li, M. Q., Shao, J., Meng, Y. H., Mei, J., Wang, Y., Li, H., Zhang, L., Chang, K. K., Wang, X. Q., Zhu, X. Y., and Li, D. J. (2013) NME1 suppression promotes growth, adhesion and implantation of endometrial stromal cells via Akt and MAPK/Erk1/2 signal pathways in the endometriotic milieu. Hum. Reprod. 28, 2822–2831
83. Quinn, C. E., Simmons, D. G., and Kennedy, T. G. (2006) Expression of Cystatin C in the rat endometrium during the peri-implantation period. Biochem. Biophys. Res. Commun. 349, 236–244
84. Song, G., Bailey, D. W., Dunlap, K. A., Burghardt, R. C., Spencer, T. E., Bazer, F. W., and Johnson, G. A. (2010) Cathepsin B, Cathepsin L, and Cystatin C in the Porcine Uterus and Placenta: Potential Roles in Endometrial/Placental Remodeling and in Fluid-Phase Transport of Proteins Secreted by Uterine Epithelia Across Placental Areolae1. Biol. Reprod. 82, 854–864
85. Simon, C. (1997) Embryonic Regulation of Integrins 3, 4, and 1 in Human Endometrial Epithelial Cells in Vitro. J. Clin. Endocrinol. Metab. 82, 2607–2616
86. Wadehra, M., Forbes, A., Pushkarna, N., Goodglick, L., Gordon, L. K., Williams, C. J., and Braun, J. (2005) Epithelial membrane protein-2 regulates surface expression of αvβ3 integrin in the endometrium. Dev. Biol. 287, 336–345
87. Goossens, K., Van Soom, A., Van Zeveren, A., Favoreel, H., and Peelman, L. J. (2009) Quantification of Fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Dev. Biol. 9, 1–16
88. George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H., and Hynes, R. O. (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 119, 1079–1091
89. Seguinot-Tarafa, I., Luna, N., Suarez, E., Appleyard, C. B., and Flores, I. (2020) Inhibition of Histone Methyltransferase EZH2 Suppresses Endometriotic Vesicle Development in a Rat Model of Endometriosis. Reprod. Sci. 27, 1812–1820
90. Yu, J., Chai, P., Xie, M., Ge, S., Ruan, J., Fan, X., and Jia, R. (2021) Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 10.1186/s13059-021-02308-z
91. Muramatsu, H., Sumitomo, M., Morinaga, S., Kajikawa, K., Kobayashi, I., Nishikawa, G., Kato, Y., Watanabe, M., Zennami, K., Kanao, K., Nakamura, K., Suzuki, S., and Yoshikawa, K. (2019) Targeting lactate dehydrogenase-A promotes docetaxel-induced cytotoxicity predominantly in castration-resistant prostate cancer cells. in Oncology Reports, 10.3892/or.2019.7171
92. Marlier, J. F., Cleland, W. W., and Zeczycki, T. N. (2013) Oxamate is an alternative substrate for pyruvate carboxylase from Rhizobium etli. Biochemistry. 10.1021/bi400075t
93. Zhang, Y., Xiang, Y., Yin, Q., Du, Z., Peng, X., Wang, Q., Fidalgo, M., Xia, W., Li, Y., Zhao, Z. A., Zhang, W., Ma, J., Xu, F., Wang, J., Li, L., and Xie, W. (2018) Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat. Genet. 10.1038/s41588-017-0003-x
94. Merritt, M. E., Harrison, C., Sherry, A. D., Malloy, C. R., and Burgess, S. C. (2011) Flux through hepatic pyruvate carboxylase and phosphoenolpyruvate carboxykinase detected by hyperpolarized 13C magnetic resonance. Proc. Natl. Acad. Sci. U. S. A. 10.1073/pnas.1111247108
95. Jin, E. S., Moreno, K. X., Wang, J. X., Fidelino, L., Merritt, M. E., Sherry, A. D., and Malloy, C. R. (2016) Metabolism of hyperpolarized [1-13C]pyruvate through alternate pathways in rat liver. NMR Biomed. 10.1002/nbm.3479
96. Koch, J. M., Ramadoss, J., and Magness, R. R. (2010) Proteomic profile of uterine luminal fluid from early pregnant ewes. J. Proteome Res. 9, 3878–85
97. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372
98. Graumann, J., Hubner, N. C., Kim, J. B., Ko, K., Moser, M., Kumar, C., Cox, J., Schöler, H., and Mann, M. (2008) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins. Mol. Cell. Proteomics. 7, 672–683
99. Feng, J., Naiman, D. Q., and Cooper, B. (2007) Probability-based pattern recognition and statistical framework for randomization: Modeling tandem mass spectrum/peptide sequence false match frequencies. Bioinformatics. 23, 2210–2217
100. Li, G.-Z., Vissers, J. P. C., Silva, J. C., Golick, D., Gorenstein, M. V., and Geromanos, S. J. (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics. 9, 1696–1719
101. Waanders, L. F., Chwalek, K., Monetti, M., Kumar, C., Lammert, E., and Mann, M. (2009) Quantitative proteomic analysis of single pancreatic islets. Proc. Natl. Acad. Sci. U. S. A. 106, 18902–7
102. Behringer, R., Gertsenstein, M., Vintersen Nagy, K., and Nagy, A. (2014) Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition. Cold Harb. Lab. Press
103. Kang, Y. J., Forbes, K., Carver, J., and Aplin, J. D. (2014) The role of the osteopontin-integrin αvβ3 interaction at implantation: Functional analysis using three different in vitro models. Hum. Reprod. 29, 739–749
104. Kong, C., Sun, L., Zhang, M., Ding, L., Zhang, Q., Cheng, X., Diao, Z., Yan, Q., Zhang, H., Fang, T., Zhen, X., Hu, Y., Sun, H., and Yan, G. (2016) miR-133b reverses the hydrosalpinx-induced impairment of embryo attachment through down-regulation of SGK1. J. Clin. Endocrinol. Metab. 101, 1478–1489
105. Gu, X.-W., Chen, Z.-C., Yang, Z.-S., Yang, Y., Yan, Y.-P., Liu, Y.-F., Pan, J.-M., Su, R.-W., and Yang, Z.-M. (2020) Blastocyst-induced ATP release from luminal epithelial cells initiates decidualization through the P2Y2 receptor in mice. Sci. Signal. 13, eaba3396
106. Benjamini, Y., and Hochberg, Y. (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 57, 289–300
107. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., and Mering, C. von (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613
108. Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M. W., Lane, H. C., and Lempicki, R. A. (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–W175
109. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57
110. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York
111. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550
112. Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D., and Groop, L. C. (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273
113. Chin, C., Chen, S., and Wu, H. (2009) cyto-Hubba: A Cytoscape Plug-in for Hub Object Analysis in Network Biology. Genome Informatics …. 5, 2–3
114. Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., and Vajda, S. (2020) Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure. 28, 1071-1081.e3
115. Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., and Kozakov, D. (2017) New additions to the ClusPro server motivated by CAPRI. Proteins Struct. Funct. Bioinforma. 85, 435–444
116. Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., and Vajda, S. (2017) The ClusPro web server for protein–protein docking. Nat. Protoc. 12, 255–278
117. Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., and Vajda, S. (2013) How good is automated protein docking? Proteins Struct. Funct. Bioinforma. 81, 2159–2166