1 Pence, B. D. Severe COVID-19 and aging: are monocytes the key? Geroscience 42, 1051-1061, doi:10.1007/s11357-020-00213-0 (2020).
2 Hu, F. et al. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell Mol Immunol 17, 1119-1125, doi:10.1038/s41423-020-00550-2 (2020).
3 Ellul, M. A. et al. Neurological associations of COVID-19. Lancet Neurol 19, 767-783, doi:10.1016/S1474-4422(20)30221-0 (2020).
4 Hue, S. et al. Uncontrolled Innate and Impaired Adaptive Immune Responses in Patients with COVID-19 Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 202, 1509-1519, doi:10.1164/rccm.202005-1885OC (2020).
5 Nath, A. & Smith, B. Neurological issues during COVID-19: An Overview. Neurosci Lett, 135533, doi:10.1016/j.neulet.2020.135533 (2020).
6 Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nat Med 26, 1017-1032, doi:10.1038/s41591-020-0968-3 (2020).
7 Martin-Rojas, R. M. et al. COVID-19 coagulopathy: An in-depth analysis of the coagulation system. Eur J Haematol 105, 741-750, doi:10.1111/ejh.13501 (2020).
8 Cao, X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 20, 269-270, doi:10.1038/s41577-020-0308-3 (2020).
9 Medina, J. et al. [Endogenous retroviral sequences in the human genome can play a physiological or pathological role]. Med Sci (Paris) 33, 397-403, doi:10.1051/medsci/20173304009 (2017).
10 Qin, C. et al. Elevation of Ser9 phosphorylation of GSK3beta is required for HERV-W env-mediated BDNF signaling in human U251 cells. Neurosci Lett 627, 84-91, doi:10.1016/j.neulet.2016.05.036 (2016).
11 Dai, L. et al. Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi's sarcoma development. Oncogene 37, 4534-4545, doi:10.1038/s41388-018-0282-4 (2018).
12 Charvet, B. et al. Induction of Proinflammatory Multiple Sclerosis-Associated Retrovirus Envelope Protein by Human Herpesvirus-6A and CD46 Receptor Engagement. Front Immunol 9, 2803, doi:10.3389/fimmu.2018.02803 (2018).
13 Vincendeau, M. et al. Modulation of human endogenous retrovirus (HERV) transcription during persistent and de novo HIV-1 infection. Retrovirology 12, 27, doi:10.1186/s12977-015-0156-6 (2015).
14 Bergallo, M. et al. CMV induces HERV-K and HERV-W expression in kidney transplant recipients. J Clin Virol 68, 28-31, doi:10.1016/j.jcv.2015.04.018 (2015).
15 Li, F. et al. Transcriptional derepression of the ERVWE1 locus following influenza A virus infection. J Virol 88, 4328-4337, doi:10.1128/JVI.03628-13 (2014).
16 Mameli, G. et al. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 7, e44991, doi:10.1371/journal.pone.0044991 (2012).
17 Toufaily, C., Landry, S., Leib-Mosch, C., Rassart, E. & Barbeau, B. Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses 3, 2146-2159, doi:10.3390/v3112146 (2011).
18 Nellaker, C. et al. Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology 3, 44 (2006).
19 Perron, H. et al. Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 74 ( Pt 1), 65-72, doi:10.1099/0022-1317-74-1-65 (1993).
20 van Horssen, J., van der Pol, S., Nijland, P., Amor, S. & Perron, H. Human endogenous retrovirus W in brain lesions: Rationale for targeted therapy in multiple sclerosis. Mult Scler Relat Disord 8, 11-18, doi:10.1016/j.msard.2016.04.006 (2016).
21 Serra, C. et al. In vitro modulation of the multiple sclerosis (MS)-associated retrovirus by cytokines: implications for MS pathogenesis. J Neurovirol 9, 637-643, doi:FEXW4YLT6UVQXD01 [pii] (2003).
22 Derfuss, T. et al. A phase IIa randomised clinical study of GNbAC1, a humanised monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus in multiple sclerosis patients. Mult Scler 21, 885-893, doi:10.1177/1352458514554052 (2015).
23 Kremer, D. et al. pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis. Proc Natl Acad Sci U S A 116, 15216-15225, doi:10.1073/pnas.1901283116 (2019).
24 Perron, H. et al. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One 8, e80128, doi:10.1371/journal.pone.0080128 (2013).
25 Kremer, D. et al. Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol 74, 721-732, doi:10.1002/ana.23970 (2013).
26 Meylan, F. et al. Negative thymocyte selection to HERV-K18 superantigens in humans. Blood 105, 4377-4382, doi:10.1182/blood-2004-07-2596 (2005).
27 Stauffer, Y. et al. Interferon-alpha-induced endogenous superantigen. a model linking environment and autoimmunity. Immunity 15, 591-601 (2001).
28 Perron, H. et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 287, 321-332, doi:10.1006/viro.2001.1045 S0042-6822(01)91045-1 [pii] (2001).
29 Firouzi, R. et al. Multiple sclerosis-associated retrovirus particles cause T lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. J Neurovirol 9, 79-93, doi:10.1080/13550280390173328 (2003).
30 Rolland, A. et al. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol 176, 7636-7644, doi:176/12/7636 [pii] (2006).
31 Saresella, M. et al. Multiple sclerosis-associated retroviral agent (MSRV)-stimulated cytokine production in patients with relapsing-remitting multiple sclerosis. Mult Scler 15, 443-447, doi:1352458508100840 [pii] 10.1177/1352458508100840 (2009).
32 Duperray, A. et al. Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int Immunol 27, 545-553, doi:10.1093/intimm/dxv025 (2015).
33 Li, W. et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med 7, 307ra153, doi:10.1126/scitranslmed.aac8201 (2015).
34 Kury, P. et al. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol Med 24, 379-394, doi:10.1016/j.molmed.2018.02.007 (2018).
35 Johansson, E. M. et al. Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis. Sci Adv 6, eabc0708, doi:10.1126/sciadv.abc0708 (2020).
36 Engel, M. E. & Hiebert, S. W. The enemy within: dormant retroviruses awaken. Nat Med 16, 517-518, doi:nm0510-517 [pii] 10.1038/nm0510-517 (2010).
37 Balestrieri, E. et al. First evidence of pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine in revision, doi:https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3763768) (2021).
38 Rebendenne, A. et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J Virol, doi:10.1128/JVI.02415-20 (2021).
39 Levet, S. et al. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight 2, doi:10.1172/jci.insight.94387 (2017).
40 Faucard, R. et al. Human Endogenous Retrovirus and Neuroinflammation in Chronic Inflammatory Demyelinating Polyradiculoneuropathy. EBioMedicine 6, 190-198, doi:10.1016/j.ebiom.2016.03.001 (2016).
41 Milhem, C., Ingelaere, C., Mordon, S., Moralès, O. & Delhem, N. Beta-2 Microglobulin And Ubiquitin C Identified as Two Robust Housekeeping Genes for RNA Expression Normalization in Real Time PCR on Human Leukocytes and Regulatory T Cells. Biomed J Sci & Tech Res, 24425-24430, doi:10.26717/BJSTR.2020.31.005146 (2020).
42 Niedergang, F. et al. The Staphylococcus aureus enterotoxin B superantigen induces specific T cell receptor down-regulation by increasing its internalization. J Biol Chem 270, 12839-12845, doi:10.1074/jbc.270.21.12839 (1995).
43 Cheng, M. H. et al. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. Proc Natl Acad Sci U S A 117, 25254-25262, doi:10.1073/pnas.2010722117 (2020).
44 Perron, H. & Lang, A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol 39, 51-61, doi:10.1007/s12016-009-8170-x (2010).
45 Mallet, F. et al. The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci U S A 101, 1731-1736 (2004).
46 Wilson, K. D. et al. Endogenous Retrovirus-Derived lncRNA BANCR Promotes Cardiomyocyte Migration in Humans and Non-human Primates. Dev Cell 54, 694-709 e699, doi:10.1016/j.devcel.2020.07.006 (2020).
47 Wang, T. et al. Regulation of stem cell function and neuronal differentiation by HERV-K via mTOR pathway. Proc Natl Acad Sci U S A 117, 17842-17853, doi:10.1073/pnas.2002427117 (2020).
48 Younan, P. et al. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm. mBio 8, doi:10.1128/mBio.00845-17 (2017).
49 Baillet, N. et al. Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques. Commun Biol 4, 27, doi:10.1038/s42003-020-01543-7 (2021).
50 Janssen, N. A. F. et al. Dysregulated innate and adaptive immune responses discriminate disease severity in COVID-19. J Infect Dis, doi:10.1093/infdis/jiab065 (2021).
51 Madeira, A. et al. MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: Relevance of GNbAC1 in multiple sclerosis treatment. J Neuroimmunol 291, 29-38, doi:10.1016/j.jneuroim.2015.12.006 (2016).
52 Rui, L., Haonan, L. & Wanyi, C. Silico analysis of interaction between full-length SARS-CoV2 S protein with human Ace2 receptor: Modelling, docking, MD simulation. Biophys Chem 267, 106472, doi:10.1016/j.bpc.2020.106472 (2020).
53 Xia, X. Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design. Viruses 13, doi:10.3390/v13010109 (2021).
54 Walsh, E. E. et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 383, 2439-2450, doi:10.1056/NEJMoa2027906 (2020).
55 Juraszek, J. et al. Stabilizing the closed SARS-CoV-2 spike trimer. Nat Commun 12, 244, doi:10.1038/s41467-020-20321-x (2021).
56 Xia, S. et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 21, 39-51, doi:10.1016/S1473-3099(20)30831-8 (2021).
57 Zhou, Y. et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin Transl Sci 13, 1077-1086, doi:10.1111/cts.12805 (2020).
58 Zhou, S., Jones-Lopez, E. C., Soneji, D. J., Azevedo, C. J. & Patel, V. R. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis and Myelitis in COVID-19. J Neuroophthalmol 40, 398-402, doi:10.1097/WNO.0000000000001049 (2020).
59 Gao, Z. W., Zhang, H. Z., Liu, C. & Dong, K. Autoantibodies in COVID-19: frequency and function. Autoimmun Rev, 102754, doi:10.1016/j.autrev.2021.102754 (2021).
60 Acosta-Ampudia, Y. et al. COVID-19 convalescent plasma composition and immunological effects in severe patients. J Autoimmun 118, 102598, doi:10.1016/j.jaut.2021.102598 (2021).