1 Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med348, 1953-1966, doi:10.1056/NEJMoa030781 (2003).
2 Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med367, 1814-1820, doi:10.1056/NEJMoa1211721 (2012).
3 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
4 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).
5 Xia, S. et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol, doi:10.1038/s41423-020-0374-2 (2020).
6 Xia, S. et al. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct Target Ther5, 92, doi:10.1038/s41392-020-0184-0 (2020).
7 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell181, 281-292 e286, doi:10.1016/j.cell.2020.02.058 (2020).
8 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science367, 1260-1263, doi:10.1126/science.abb2507 (2020).
9 Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature, doi:10.1038/s41586-020-2179-y (2020).
10 Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, doi:10.1038/s41586-020-2180-5 (2020).
11 Xia, S. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res30, 343-355, doi:10.1038/s41422-020-0305-x (2020).
12 Turonova, B. et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science370, 203-208, doi:10.1126/science.abd5223 (2020).
13 Yao, H. et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell183, 730-738 e713, doi:10.1016/j.cell.2020.09.018 (2020).
14 Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science369, 1586-1592, doi:10.1126/science.abd4251 (2020).
15 Liu, C. et al. The Architecture of Inactivated SARS-CoV-2 with Postfusion Spikes Revealed by Cryo-EM and Cryo-ET. Structure28, 1218-+, doi:10.1016/j.str.2020.10.001 (2020).
16 Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, doi:10.1038/s41586-020-2665-2 (2020).
17 Klein, S. et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun11, 5885, doi:10.1038/s41467-020-19619-7 (2020).
18 Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods16, 1146-1152, doi:10.1038/s41592-019-0580-y (2019).
19 Schroth-Diez, B. et al. The role of the transmembrane and of the intraviral domain of glycoproteins in membrane fusion of enveloped viruses. Biosci Rep20, 571-595, doi:10.1023/a:1010415122234 (2000).
20 Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science369, 330-+, doi:10.1126/science.abb9983 (2020).
21 Danieli, T., Pelletier, S. L., Henis, Y. I. & White, J. M. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. Journal of Cell Biology133, 559-569, doi:DOI 10.1083/jcb.133.3.559 (1996).
22 Lee, K. K. Architecture of a nascent viral fusion pore. Embo Journal29, 1299-1311, doi:10.1038/emboj.2010.13 (2010).
23 Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nature Reviews Molecular Cell Biology9, 543-556, doi:10.1038/nrm2417 (2008).
24 Bestle, D. et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance3, doi:10.26508/lsa.202000786 (2020).
25 Brooke, G. N. & Prischi, F. Structural and functional modelling of SARS-CoV-2 entry in animal models. Scientific reports10, 15917, doi:10.1038/s41598-020-72528-z (2020).
26 Zhu, Y. et al. Rational improvement of gp41-targeting HIV-1 fusion inhibitors: an innovatively designed Ile-Asp-Leu tail with alternative conformations. Sci Rep6, 31983, doi:10.1038/srep31983 (2016).
27 Zhang, X. et al. Crystal Structure of Refolding Fusion Core of Lassa Virus GP2 and Design of Lassa Virus Fusion Inhibitors. Front Microbiol10, 1829, doi:10.3389/fmicb.2019.01829 (2019).
28 Lu, L. et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun5, 3067, doi:10.1038/ncomms4067 (2014).
29 Uittenbogaard, J. P., Zomer, B., Hoogerhout, P. & Metz, B. Reactions of beta-propiolactone with nucleobase analogues, nucleosides, and peptides: implications for the inactivation of viruses. J Biol Chem286, 36198-36214, doi:10.1074/jbc.M111.279232 (2011).
30 Taubman, M. A. & Atassi, M. Z. Reaction of beta-propiolactone with amino acids and its specificity for methionine. Biochem J106, 829-834, doi:10.1042/bj1060829 (1968).
31 Bonnafous, P. et al. Treatment of influenza virus with beta-propiolactone alters viral membrane fusion. Biochim Biophys Acta1838, 355-363, doi:10.1016/j.bbamem.2013.09.021 (2014).
32 Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J Struct Biol116, 71-76, doi:10.1006/jsbi.1996.0013 (1996).
33 Yao, H. et al. Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection. Cell Res31, 25-36, doi:10.1038/s41422-020-00444-y (2021).
34 Wang, N. et al. Structure-based development of human antibody cocktails against SARS-CoV-2. Cell Res31, 101-103, doi:10.1038/s41422-020-00446-w (2021).
35 Dong, H. et al. Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies. 2020.2012.2031.424923, doi:10.1101/2020.12.31.424923 %J bioRxiv (2021).
36 Wang, N. et al. Architecture of African swine fever virus and implications for viral assembly. Science366, 640-644, doi:10.1126/science.aaz1439 (2019).
37 Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J Struct Biol197, 191-198, doi:10.1016/j.jsb.2016.06.007 (2017).
38 Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol152, 36-51 (2005).
39 Burt, A., Gaifas, L., Dendooven, T. & Gutsche, I. Tools enabling flexible approaches to high-resolution subtomogram averaging. doi:10.1101/2021.01.31.428990 (2021).
40 Castano-Diez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: A flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J Struct Biol178, 139-151, doi:10.1016/j.jsb.2011.12.017 (2012).
41 Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol180, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).
42 Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife5, e18722 (2016).
43 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr66, 486-501, doi:10.1107/S0907444910007493 (2010).
44 Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr68, 352-367, doi:10.1107/S0907444912001308 (2012).
45 Pettersen, E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem25, 1605-1612, doi:10.1002/jcc.20084 (2004).
46 Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, doi:10.1002/pro.3943 (2020).