1Rothan, H. A. & Byrareddy, S. N. The epidemiology and pathogenesis of coronavirus disease (COVID–19) outbreak. J Autoimmun, 102433, doi:10.1016/j.jaut.2020.102433 (2020).
2Gordon, D. E. et al. A SARS-CoV–2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bioRxiv, 2020.2003.2022.002386, doi:10.1101/2020.03.22.002386 (2020).
3Gysi, D. M. et al. Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID–19. arXiv preprint arXiv:2004.07229 (2020).
4Zhou, Y. et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV–2. Cell Discovery 6, 14, doi:10.1038/s41421–020–0153–3 (2020).
5Athauda, D. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. The Lancet 390, 1664–1675 (2017).
6Kinnings, S. L. et al. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS computational biology 5, e1000423 (2009).
7Evans, J. M., Donnelly, L. A., Emslie-Smith, A.M., Alessi, D. R. & Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. Bmj 330, 1304–1305 (2005).
8Law, G. L., Tisoncik-Go, J., Korth, M. J. & Katze, M. G. Drug repurposing: a better approach for infectious disease drug discovery? Current opinion in immunology 25, 588–592 (2013).
9Josset, L. et al. Gene expression signature-based screening identifies new broadly effective influenza a antivirals. PloS one 5 (2010).
10Pizzorno, A. et al. Repurposing of drugs as novel influenza inhibitors from clinical gene expression infection signatures. Frontiers in immunology 10, 60 (2019).
11Josset, L. et al. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. MBio 4, e00165–00113 (2013).
12Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic acids research 41, D991-D995 (2012).
13Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. science 313, 1929–1935 (2006).
14Kupershmidt, I. et al. Ontology-based meta-analysis of global collections of high-throughput public data. PloS one 5, e13066 (2010).
15Kalyani B. Karunakaran, N. B., Madhavi K. Ganapathiraju Interactome of SARS-CoV–2 / nCoV19 modulated host proteins with computationally predicted PPIs. Research Square PREPRINT (Version 1) (2020).
16Kupershmidt, I. et al. Ontology-based meta-analysis of global collections of high-throughput public data. PLoS One 5, doi:10.1371/journal.pone.0013066 (2010).
17Chattopadhyay, A. & Ganapathiraju, M. K. Demonstration Study: A Protocol to Combine Online Tools and Databases for Identifying Potentially Repurposable Drugs. Data 2, 15 (2017).
18Reghunathan, R. et al. Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC immunology 6, 2 (2005).
19Blanco-Melo, D. et al. SARS-CoV–2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems. bioRxiv, 2020.2003.2024.004655, doi:10.1101/2020.03.24.004655 (2020).
20Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic acids research (2019).
21Li, G. & De Clercq, E. (Nature Publishing Group, 2020).
22Touret, F. et al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV–2 replication. BioRxiv (2020).
23Ellinger, B. & Zaliani, A. Identification of inhibitors of SARS-CoV–2 in-vitro cellular toxicity in human (Caco–2) cells using a large scale drug repurposing collection. Research Square 10 (2020).
24Jeon, S. et al. Identification of antiviral drug candidates against SARS-CoV–2 from FDA-approved drugs. Antimicrobial Agents and Chemotherapy (2020).
25Weston, S. et al. Broad anti-coronaviral activity of FDA approved drugs against SARS-CoV–2 in vitro and SARS-CoV in vivo. bioRxiv (2020).
26Li, H. et al. Effect of interferon alpha and cyclosporine treatment separately and in combination on middle east respiratory syndrome coronavirus (mers-cov) replication in a human in-vitro and ex-vivo culture model. Antiviral research 155, 89–96 (2018).
27Cho, H. et al. Sorafenib suppresses hepatitis B virus gene expression via inhibiting JNK pathway. Hepatoma Research 1, 97 (2015).
28Cham, L. B. et al. Tamoxifen Protects from Vesicular Stomatitis Virus Infection. Pharmaceuticals 12, 142 (2019).
29Quintana, V. et al. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral research 176, 104749 (2020).
30Mehta, D. R., Ashkar, A. A. & Mossman, K. L. The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PLoS One 7 (2012).
31Lin, S.-C. et al. Effective inhibition of MERS-CoV infection by resveratrol. BMC infectious diseases 17, 144 (2017).
32Shendi, A.M., Hung, R. K., Caplin, B., Griffiths, P. & Harber, M. The use of sirolimus in patients with recurrent cytomegalovirus infection after kidney transplantation: A retrospective case series analysis. Saudi Journal of Kidney Diseases and Transplantation 30, 606–614 (2019).
33Cheng, K.-W. et al. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral research 115, 9–16 (2015).
34Hart, B. J. et al. Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. The Journal of general virology 95, 571 (2014).
35Falzarano, D. et al. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nature medicine 19, 1313–1317 (2013).
36Kumaki, Y. et al. Interferon alfacon 1 inhibits SARS-CoV infection in human bronchial epithelial Calu–3 cells. Biochemical and biophysical research communications 371, 110–113 (2008).
37Hoffmann, M. et al. SARS-CoV–2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell (2020).
38Burrell, L. M., Johnston, C. I., Tikellis, C. & Cooper, M. E. ACE2, a new regulator of the renin–angiotensin system. Trends in Endocrinology & Metabolism 15, 166–169 (2004).
39Wu, W. et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses 8, 6 (2016).
40Nugent, K. & Shanley, J. Verapamil inhibits influenza A virus replication. Archives of virology 81, 163–170 (1984).
41Hall, O. J. et al. Progesterone-based therapy protects against influenza by promoting lung repair and recovery in females. PLoS pathogens 12 (2016).
42Torriani, G. et al. Identification of clotrimazole derivatives as specific inhibitors of arenavirus fusion. Journal of virology 93, e01744–01718 (2019).
43Perry, C. M. & Noble, S. Didanosine. Drugs 58, 1099–1135 (1999).
44Ryang, J., Yan, Y., Song, Y., Liu, F. & Ng, T. B. Anti-HIV, antitumor and immunomodulatory activities of paclitaxel from fermentation broth using molecular imprinting technique. AMB Express 9, 194, doi:10.1186/s13568–019–0915–1 (2019).
45Sehgal, N., Kumawat, K. L., Basu, A. & Ravindranath, V. Fenofibrate reduces mortality and precludes neurological deficits in survivors in murine model of Japanese encephalitis viral infection. PloS one 7, e35427-e35427, doi:10.1371/journal.pone.0035427 (2012).
46Españo, E. et al. Lipophilic statins inhibit Zika virus production in Vero cells. Scientific reports 9, 11461–11461, doi:10.1038/s41598–019–47956–1 (2019).
47Zhao, Y. et al. Structures of Ebola Virus Glycoprotein Complexes with Tricyclic Antidepressant and Antipsychotic Drugs. J Med Chem 61, 4938–4945, doi:10.1021/acs.jmedchem.8b00350 (2018).
48AMARAL, L., Viveiros, M. & MOLNAR, J. Antimicrobial activity of phenothiazines. in vivo 18, 725–732 (2004).
49Sudarsanam, T. D., Sahni, R. D. & John, G. T. Leflunomide: a possible alternative for gangciclovir sensitive and resistant cytomegalovirus infections. Postgrad Med J 82, 313–314, doi:10.1136/pgmj.2005.038521 (2006).
50Omeragic, A. et al. Peroxisome Proliferator-Activated Receptor-gamma agonists exhibit anti-inflammatory and antiviral effects in an EcoHIV mouse model. Scientific reports 9, 1–12 (2019).
51Imai, H., Dansako, H., Ueda, Y., Satoh, S. & Kato, N. Daunorubicin, a topoisomerase II poison, suppresses viral production of hepatitis B virus by inducing cGAS-dependent innate immune response. Biochemical and biophysical research communications 504, 672–678 (2018).
52Chang, J. et al. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses. Antiviral research 98, 432–440 (2013).
53Kuleshov, M. V. et al. The COVID–19 Gene and Drug Set Library. (2020).
54Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498–2504 (2003).