1 Adhikari, S. P. et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious diseases of poverty 9, 29, doi:10.1186/s40249-020-00646-x (2020).
2 Fehr, A. R., Channappanavar, R. & Perlman, S. Middle East Respiratory Syndrome: Emergence of a Pathogenic Human Coronavirus. Annual review of medicine 68, 387-399, doi:10.1146/annurev-med-051215-031152 (2017).
3 Bosch BJ, v. d. Z. R., de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of Virology 77, 8801–8811, doi: 10.1128/JVI.77.16.8801-8811.2003 (2003).
4 Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual review of virology 3, 237-261, doi:10.1146/annurev-virology-110615-042301 (2016).
5 Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 94, doi:10.1128/jvi.00127-20 (2020).
6 Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454, doi:10.1038/nature02145 (2003).
7 Liu, X. e. a. Efficacy of Chloroquine and Lopinavir/Ritonavir in mild/general COVID-2019: a prospective, open-label, multicenter randomized controlled clinical study. Research Square
doi:10.21203/rs.3.rs-16392/v1 (2020).
8 de Beer, T. A., Berka, K., Thornton, J. M. & Laskowski, R. A. PDBsum additions. Nucleic acids research 42, D292-296, doi:10.1093/nar/gkt940 (2014).
9 Du, X. et al. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. International journal of molecular sciences 17, doi:10.3390/ijms17020144 (2016).
10 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.) 367, 1260-1263, doi:10.1126/science.abb2507 (2020).
11 Xia, S. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell research 30, 343-355, doi:10.1038/s41422-020-0305-x (2020).
12 Pettersen, E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry 25, 1605-1612, doi:10.1002/jcc.20084 (2004).
13 Negi, S. S., Schein, C. H., Oezguen, N., Power, T. D. & Braun, W. InterProSurf: a web server for predicting interacting sites on protein surfaces. Bioinformatics (Oxford, England) 23, 3397-3399, doi:10.1093/bioinformatics/btm474 (2007).
14 Negi, S. S. & Braun, W. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Journal of molecular modeling 13, 1157-1167, doi:10.1007/s00894-007-0237-0 (2007).
15 Negi, S. S., Kolokoltsov, A. A., Schein, C. H., Davey, R. A. & Braun, W. Determining functionally important amino acid residues of the E1 protein of Venezuelan equine encephalitis virus. Journal of molecular modeling 12, 921-929, doi:10.1007/s00894-006-0101-7 (2006).
16 Laskowski R A, M. M. W., Moss D S, Thornton J M PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26, 283-291, doi:https://doi.org/10.1107/S0021889892009944 (1993).
17 Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of biomolecular NMR 8, 477-486, doi:10.1007/bf00228148 (1996).
18 Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic acids research 46, W363-w367, doi:10.1093/nar/gky473 (2018).
19 Ko, J., Park, H., Heo, L. & Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucleic acids research 40, W294-297, doi:10.1093/nar/gks493 (2012).
20 Duhovny D, N. R., Wolfson HJ. Efficient Unbound Docking of Rigid Molecules. . Proceedings of the 2'nd Workshop on Algorithms in Bioinformatics(WABI) pp 185-200 (2002).
21 Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic acids research 33, W363-367, doi:10.1093/nar/gki481 (2005).
22 Andrusier, N., Nussinov, R. & Wolfson, H. J. FireDock: fast interaction refinement in molecular docking. Proteins 69, 139-159, doi:10.1002/prot.21495 (2007).
23 Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R. & Wolfson, H. J. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic acids research 36, W229-232, doi:10.1093/nar/gkn186 (2008).
24 Yan, Y., Zhang, D., Zhou, P., Li, B. & Huang, S. Y. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic acids research 45, W365-w373, doi:10.1093/nar/gkx407 (2017).
25 Yan, Y., Tao, H., He, J. & Huang, S. Y. The HDOCK server for integrated protein-protein docking. Nature protocols 15, 1829-1852, doi:10.1038/s41596-020-0312-x (2020).
26 van Zundert, G. C. P. et al. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. Journal of molecular biology 428, 720-725, doi:10.1016/j.jmb.2015.09.014 (2016).
27 Antunes, D. A. et al. DINC 2.0: A New Protein-Peptide Docking Webserver Using an Incremental Approach. Cancer research 77, e55-e57, doi:10.1158/0008-5472.Can-17-0511 (2017).
28 Pea, L., Roda, L. & Moll, F. Desmopressin treatment for a case of dengue hemorrhagic fever/dengue shock syndrome. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 33, 1611-1612, doi:10.1086/323013 (2001).
29 Versteilen, A. M. et al. Mechanisms of the urinary concentration defect and effect of desmopressin during endotoxemia in rats. Shock (Augusta, Ga.) 29, 217-222, doi:10.1097/shk.0b013e3180ca9e53 (2008).
30 Sacchi, A. et al. Dendritic cells activation is associated with sustained virological response to telaprevir treatment of HCV-infected patients. Clinical immunology (Orlando, Fla.) 183, 82-90, doi:10.1016/j.clim.2017.07.017 (2017).
31 Gentile, I., Viola, C., Borgia, F., Castaldo, G. & Borgia, G. Telaprevir: a promising protease inhibitor for the treatment of hepatitis C virus infection. Current medicinal chemistry 16, 1115-1121, doi:10.2174/092986709787581789 (2009).
32 Nakazawa, S. et al. [Evaluation of cefpiramide, a new cephem parenteral preparation developed in Japan, in pediatrics]. The Japanese journal of antibiotics 36, 2160-2170 (1983).
33 Wang, H. et al. In-vitro antibacterial activities of cefpiramide and other broad-spectrum antibiotics against 440 clinical isolates in China. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 6, 81-85, doi:10.1007/pl00012156 (2000).
34 Washington, J. A., 2nd & Wilson, W. R. Erythromycin: a microbial and clinical perspective after 30 years of clinical use (1). Mayo Clinic proceedings 60, 189-203, doi:10.1016/s0025-6196(12)60219-5 (1985).
35 Alhazmi, A. Spleen Tyrosine Kinase as a Target Therapy for Pseudomonas aeruginosa Infection. Journal of innate immunity 10, 255-263, doi:10.1159/000489863 (2018).
36 Gopalakrishnan, A. M. & Kumar, N. Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species. Antimicrobial agents and chemotherapy 59, 317-325, doi:10.1128/aac.03663-14 (2015).
37 Li, Q. & Weina, P. Artesunate: The Best Drug in the Treatment of Severe and Complicated Malaria. Pharmaceuticals (Basel, Switzerland) 3, 2322-2332, doi:10.3390/ph3072322 (2010).
38 Efferth, T. et al. The antiviral activities of artemisinin and artesunate. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 47, 804-811, doi:10.1086/591195 (2008).
39 Ornstein, M. H. & Sperber, K. The antiinflammatory and antiviral effects of hydroxychloroquine in two patients with acquired immunodeficiency syndrome and active inflammatory arthritis. Arthritis and rheumatism 39, 157-161, doi:10.1002/art.1780390122 (1996).
40 Keyaerts, E. et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial agents and chemotherapy 53, 3416-3421, doi:10.1128/aac.01509-08 (2009).
41 Singh, A. K., Singh, A., Shaikh, A., Singh, R. & Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & metabolic syndrome 14, 241-246, doi:10.1016/j.dsx.2020.03.011 (2020).
42 Sarma, P. et al. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis. Journal of medical virology, doi:10.1002/jmv.25898 (2020).
43 Chan, H. L. et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of HBeAg-positive chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. The lancet. Gastroenterology & hepatology 1, 185-195, doi:10.1016/s2468-1253(16)30024-3 (2016).
44 Miller, M. D., Margot, N. A., Hertogs, K., Larder, B. & Miller, V. Antiviral activity of tenofovir (PMPA) against nucleoside-resistant clinical HIV samples. Nucleosides, nucleotides & nucleic acids 20, 1025-1028, doi:10.1081/ncn-100002483 (2001).
45 Narita, M. et al. Use of rifabutin with protease inhibitors for human immunodeficiency virus-infected patients with tuberculosis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 30, 779-783, doi:10.1086/313771 (2000).
46 Cholo, M. C., Mothiba, M. T., Fourie, B. & Anderson, R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. The Journal of antimicrobial chemotherapy 72, 338-353, doi:10.1093/jac/dkw426 (2017).
47 Pym, A. S. et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. The European respiratory journal 47, 564-574, doi:10.1183/13993003.00724-2015 (2016).
48 Piscaer, I. et al. Vitamin K deficiency: the linking pin between COPD and cardiovascular diseases? Respiratory research 18, 189, doi:10.1186/s12931-017-0673-z (2017).
49 Al-Harbi, N. O. et al. Riboflavin attenuates lipopolysaccharide-induced lung injury in rats. Toxicology mechanisms and methods 25, 417-423, doi:10.3109/15376516.2015.1045662 (2015).
50 Murray, M. F. Nicotinamide: an oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 36, 453-460, doi:10.1086/367544 (2003).
51 Davis, R., Whittington, R. Aprotinin. Drugs 49, 954–983, doi:https://doi.org/10.2165/00003495-199549060-00008 (1995).
52 Bottcher-Friebertshauser, E., Klenk, H. D. & Garten, W. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathogens and disease 69, 87-100, doi:10.1111/2049-632x.12053 (2013).
53 Zhirnov, O. P., Klenk, H. D. & Wright, P. F. Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral research 92, 27-36, doi:10.1016/j.antiviral.2011.07.014 (2011).
54 Emadi, A. & Gore, S. D. Arsenic trioxide - An old drug rediscovered. Blood reviews 24, 191-199, doi:10.1016/j.blre.2010.04.001 (2010).
55 Hu, J. et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 106, 3342-3347, doi:10.1073/pnas.0813280106 (2009).
56 Yang, Q. et al. Arsenic Trioxide Impacts Viral Latency and Delays Viral Rebound after Termination of ART in Chronically SIV-Infected Macaques. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 6, 1900319, doi:10.1002/advs.201900319 (2019).
57 Wang, Y. e. a. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet, doi:https://doi.org/10.1016/S0140-6736(20)31022-9 (2020).