1. Muchhala KH, Jacob JC, Kang M, Dewey WL, Akbarali HI. The Guts of the Opioid Crisis. Physiology. 2021;36(5):315-323. doi:10.1152/physiol.00014.2021
2. Holzer P. Pharmacology of Opioids and their Effects on Gastrointestinal Function. The American Journal of Gastroenterology Supplements. 2014;2(1):9-16. doi:10.1038/ajgsup.2014.4
3. Xu Y, Xie Z, Wang H, et al. Bacterial Diversity of Intestinal Microbiota in Patients with Substance Use Disorders Revealed by 16S rRNA Gene Deep Sequencing. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-03706-9
4. Gicquelais RE, Bohnert ASB, Thomas L, Foxman B. Opioid agonist and antagonist use and the gut microbiota: associations among people in addiction treatment. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-76570-9
5. Barengolts E, Green SJ, Eisenberg Y, et al. Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease. PLoS One. 2018;13(3). doi:10.1371/journal.pone.0194171
6. Zhernakova A, Kurilshikov A, Bonder MJ, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science (1979). 2016;352(6285). doi:10.1126/science.aad3369
7. Cruz-Lebrón A, Johnson R, Mazahery C, et al. Chronic opioid use modulates human enteric microbiota and intestinal barrier integrity. Gut Microbes. 2021;13(1). doi:10.1080/19490976.2021.1946368
8. Nabipour S, Ayu Said M, Hussain Habil M. Burden and nutritional deficiencies in opiate addiction-systematic review article. Iran J Public Health. 2014;43(8).
9. Morabia A, Fabre J, Ghee E, Zeger S, Orsat E, Robert A. Diet and Opiate Addiction: a quantitative assessment of the diet of non-institutionalized opiate addicts. Addiction. 1989;84(2):173-180. doi:10.1111/j.1360-0443.1989.tb00566.x
10. Santolaria-Fernández FJ, Gómez-Sirvent JL, González-Reimers CE, et al. Nutritional assessment of drug addicts. Drug Alcohol Depend. 1995;38(1). doi:10.1016/0376-8716(94)01088-3
11. Kang M, Mischel RA, Bhave S, et al. The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci Rep. 2017;7(1):42658. doi:10.1038/srep42658
12. Mischel RA, Dewey WL, Akbarali HI. Tolerance to Morphine-Induced Inhibition of TTX-R Sodium Channels in Dorsal Root Ganglia Neurons Is Modulated by Gut-Derived Mediators. iScience. 2018;2:193-209. doi:10.1016/j.isci.2018.03.003
13. Wang F, Meng J, Zhang L, Johnson T, Chen C, Roy S. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep. 2018;8(1). doi:10.1038/s41598-018-21915-8
14. Banerjee S, Sindberg G, Wang F, et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol. 2016;9(6). doi:10.1038/mi.2016.9
15. Meng J, Banerjee S, Li D, et al. Opioid exacerbation of gram-positive sepsis, induced by gut microbial modulation, is rescued by IL-17A neutralization. Sci Rep. 2015;5. doi:10.1038/srep10918
16. Zhang L, Meng J, Ban Y, et al. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proceedings of the National Academy of Sciences. 2019;116(27):13523-13532. doi:10.1073/pnas.1901182116
17. Sharma U, Olson RK, Erhart FN, et al. Prescription opioids induce gut dysbiosis and exacerbate colitis in a murine model of inflammatory bowel disease. J Crohns Colitis. 2020;14(6). doi:10.1093/ecco-jcc/jjz188
18. Komla E, Stevens DL, Zheng Y, Zhang Y, Dewey WL, Akbarali HI. Experimental Colitis Enhances the Rate of Antinociceptive Tolerance to Morphine via Peripheral Opioid Receptors. Journal of Pharmacology and Experimental Therapeutics. 2019;370(3):504-513. doi:10.1124/jpet.119.256941
19. Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol. 2023;14. doi:10.3389/fimmu.2023.1114348
20. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9(5):356-368. doi:10.1038/nrmicro2546
21. Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol. 2012;3(OCT). doi:10.3389/fimmu.2012.00310
22. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10(MAR). doi:10.3389/fimmu.2019.00277
23. Skoglund J. Quantification of Short Chain Fatty Acids in Serum and Plasma. 2016.
24. Udden SMN, Waliullah S, Harris M, Zaki H. The ex vivo colon organ culture and its use in antimicrobial host defense studies. Journal of Visualized Experiments. 2017;2017(120). doi:10.3791/55347
25. Muchhala KH, Koseli E, Gade AR, et al. Chronic Morphine Induces IL-18 in Ileum Myenteric Plexus Neurons Through Mu-opioid Receptor Activation in Cholinergic and VIPergic Neurons. Journal of Neuroimmune Pharmacology. 2022;17(1-2). doi:10.1007/s11481-021-10050-3
26. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. mBio. 2018;9(3). doi:10.1128/mBio.02331-17
27. Meng J, Yu H, Ma J, et al. Morphine Induces Bacterial Translocation in Mice by Compromising Intestinal Barrier Function in a TLR-Dependent Manner. PLoS One. 2013;8(1). doi:10.1371/journal.pone.0054040
28. Gai X, Wang H, Li Y, et al. Fecal Microbiota Transplantation Protects the Intestinal Mucosal Barrier by Reconstructing the Gut Microbiota in a Murine Model of Sepsis. Front Cell Infect Microbiol. 2021;11. doi:10.3389/fcimb.2021.736204
29. Cash HL, Whitham C V., Behrendt CL, Hooper L V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science (1979). 2006;313(5790). doi:10.1126/science.1127119
30. Shin JH, Seeley RJ. REG3 proteins as gut hormones? Endocrinology. 2019;160(6). doi:10.1210/en.2019-00073
31. Landy J, Ronde E, English N, et al. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol. 2016;22(11). doi:10.3748/wjg.v22.i11.3117
32. Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science (1979). 2011;334(6053). doi:10.1126/science.1209791
33. Loonen LMP, Stolte EH, Jaklofsky MTJ, et al. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol. 2014;7(4). doi:10.1038/mi.2013.109
34. DiCello JJ, Carbone SE, Saito A, et al. Mu and Delta Opioid Receptors Are Coexpressed and Functionally Interact in the Enteric Nervous System of the Mouse Colon. CMGH. 2020;9(3):465-483. doi:10.1016/j.jcmgh.2019.11.006
35. Yoo BB, Griffiths JA, Thuy-Boun P, et al. Neuronal Activation of the Gastrointestinal Tract Shapes the Gut Environment in Mice. bioRxiv . Published online April 12, 2021. doi:10.1101/2021.04.12.439539
36. Eberl G, Colonna M, Santo JPD, McKenzie ANJ. Innate lymphoid cells: A new paradigm in immunology. Science (1979). 2015;348(6237). doi:10.1126/science.aaa6566
37. Seillet C, Luong K, Tellier J, et al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat Immunol. 2020;21(2). doi:10.1038/s41590-019-0567-y
38. Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. Feeding-dependent VIP neuron–ILC3 circuit regulates the intestinal barrier. Nature. 2020;579(7800). doi:10.1038/s41586-020-2039-9
39. Smith TH, Grider JR, Dewey WL, Akbarali HI. Morphine decreases enteric neuron excitability via inhibition of sodium channels. PLoS One. 2012;7(9):e45251. doi:10.1371/journal.pone.0045251
40. Smith TH, Ngwainmbi J, Hashimoto A, Dewey WL, Akbarali HI. Morphine dependence in single enteric neurons from the mouse colon requires deletion of β -arrestin2. Physiol Rep. 2014;2(9):e12140. doi:10.14814/phy2.12140
41. Gade AR, Kang M, Khan F, et al. Enhanced sensitivity of α3β4 nicotinic receptors in enteric neurons after long-term morphine: Implication for opioid-induced constipation. Journal of Pharmacology and Experimental Therapeutics. 2016;357(3). doi:10.1124/jpet.116.233304
42. Muchhala KH, Jacob JC, Dewey WL, Akbarali HI. Role of β-arrestin-2 in short- and long-term opioid tolerance in the dorsal root ganglia. Eur J Pharmacol. 2021;899. doi:10.1016/j.ejphar.2021.174007
43. Jarret A, Jackson R, Duizer C, et al. Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity. Cell. 2020;180(1). doi:10.1016/j.cell.2019.12.016
44. Kulkarni S, Kurapati S, Bogunovic M. Neuro-innate immune interactions in gut mucosal immunity. Curr Opin Immunol. 2021;68. doi:10.1016/j.coi.2020.09.007
45. Yang D, Jacobson A, Meerschaert KA, et al. Nociceptor neurons direct goblet cells via a CGRP-RAMP1 axis to drive mucus production and gut barrier protection. Cell. 2022;185(22). doi:10.1016/j.cell.2022.09.024
46. Lai NY, Musser MA, Pinho-Ribeiro FA, et al. Gut-Innervating Nociceptor Neurons Regulate Peyer’s Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell. 2020;180(1). doi:10.1016/j.cell.2019.11.014
47. Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of clostridium difficile infection in immunocompromised patients. American Journal of Gastroenterology. 2014;109(7). doi:10.1038/ajg.2014.133
48. Khoruts A, Sadowsky MJ, Hamilton MJ. Development of Fecal Microbiota Transplantation Suitable for Mainstream Medicine. Clinical Gastroenterology and Hepatology. 2015;13(2). doi:10.1016/j.cgh.2014.11.014
49. Andrews P, Borody T, Shortis N, Thompson S. Bacteriotherapy for chronic constipation - a long term follow-up. Gastroenterology. 1995;108(4):A563. doi:10.1016/0016-5085(95)26563-5
50. Pinn DM, Aroniadis OC, Brandt LJ. Is fecal microbiota transplantation (FMT) an effective treatment for patients with functional gastrointestinal disorders (FGID)? Neurogastroenterology and Motility. 2015;27(1). doi:10.1111/nmo.12479
51. Couto MR, Gonçalves P, Magro F, Martel F. Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharmacol Res. 2020;159. doi:10.1016/j.phrs.2020.104947
52. Beisner J, Filipe Rosa L, Kaden-Volynets V, Stolzer I, Günther C, Bischoff SC. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.678360
53. Raqib R, Sarker P, Bergman P, et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci U S A. 2006;103(24). doi:10.1073/pnas.0602888103
54. Zhao Y, Chen F, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018;11(3):752-762. doi:10.1038/mi.2017.118
55. Antony L. Exploration of Host Health Benefits by a Defined Consortium of Butyrate-Producing Human Gut Bacteria in Gnotobiotic Mouse Model. Doctoral Dissertation. South Dakota State University; 2021. Accessed April 26, 2023. https://www.google.com/url?q=http://proxy.library.vcu.edu/login?url%3Dhttps://www.proquest.com/dissertations-theses/exploration-host-health-benefits-defined/docview/2546075903/se-2&sa=D&source=docs&ust=1682863103562310&usg=AOvVaw2lvHzHub3bZfwfzSYF34dp
56. Hayashi A, Nagao-Kitamoto H, Kitamoto S, Kim CH, Kamada N. The Butyrate-Producing Bacterium Clostridium butyricum Suppresses Clostridioides difficile Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms . The Journal of Immunology. 2021;206(7). doi:10.4049/jimmunol.2000353
57. Bajic D, Niemann A, Hillmer AK, et al. Gut Microbiota-Derived Propionate Regulates the Expression of Reg3 Mucosal Lectins and Ameliorates Experimental Colitis in Mice. J Crohns Colitis. 2020;14(10). doi:10.1093/ecco-jcc/jjaa065
58. Xiong H, Guo B, Gan Z, et al. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci Rep. 2016;6. doi:10.1038/srep27070
59. Davie JR. Inhibition of histone deacetylase activity by butyrate. In: Journal of Nutrition. Vol 133. ; 2003. doi:10.1093/jn/133.7.2485s
60. Daly K, Shirazi-Beechey SP. Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol. 2006;25(1). doi:10.1089/dna.2006.25.49
61. Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL. Short chain fatty acids and their receptors: New metabolic targets. Translational Research. 2013;161(3). doi:10.1016/j.trsl.2012.10.007
62. Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5). doi:10.1016/j.chom.2015.03.005
63. Nøhr MK, Pedersen MH, Gille A, et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology. 2013;154(10). doi:10.1210/en.2013-1142
64. Nøhr MK, Egerod KL, Christiansen SH, et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience. 2015;290. doi:10.1016/j.neuroscience.2015.01.040
65. Kaji I, Akiba Y, Konno K, et al. Neural FFA3 activation inversely regulates anion secretion evoked by nicotinic ACh receptor activation in rat proximal colon. Journal of Physiology. 2016;594(12). doi:10.1113/JP271441
66. Peng X, Cebra JJ, Adler MW, et al. Morphine Inhibits Mucosal Antibody Responses and TGF-β mRNA in Gut-Associated Lymphoid Tissue Following Oral Cholera Toxin in Mice. The Journal of Immunology. 2001;167(7). doi:10.4049/jimmunol.167.7.3677
67. Hofford RS, Mervosh NL, Euston TJ, Meckel KR, Orr AT, Kiraly DD. Alterations in microbiome composition and metabolic byproducts drive behavioral and transcriptional responses to morphine. Neuropsychopharmacology. 2021;46(12). doi:10.1038/s41386-021-01043-0
68. Meckel KR, Kiraly DD. A potential role for the gut microbiome in substance use disorders. Psychopharmacology (Berl). 2019;236(5). doi:10.1007/s00213-019-05232-0
69. Roediger WEW. Utilization of Nutrients by Isolated Epithelial Cells of the Rat Colon. Gastroenterology. 1982;83(2). doi:10.1016/S0016-5085(82)80339-9
70. Vijay N, Morris M. Role of Monocarboxylate Transporters in Drug Delivery to the Brain. Curr Pharm Des. 2014;20(10). doi:10.2174/13816128113199990462
71. Kim SW, Hooker JM, Otto N, et al. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl Med Biol. 2013;40(7). doi:10.1016/j.nucmedbio.2013.06.007
72. Muller PA, Schneeberger M, Matheis F, et al. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature. 2020;583(7816). doi:10.1038/s41586-020-2474-7
73. Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12(FEB). doi:10.3389/fnins.2018.00049
74. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4). doi:10.1038/s41579-020-00460-0
75. Corder G, Tawfik VL, Wang D, et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med. 2017;23(2):164-173. doi:10.1038/nm.4262
76. Chen SR, Prunean A, Pan HM, Welker KL, Pan HL. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience. 2007;145(2):676-685. doi:10.1016/j.neuroscience.2006.12.016
77. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19(2). doi:10.1016/j.smim.2006.10.002
78. Miki T, Holsts O, Hardt WD. The bactericidal activity of the C-type lectin regIIIβ against gram-negative bacteria involves binding to lipid A. Journal of Biological Chemistry. 2012;287(41). doi:10.1074/jbc.M112.399998
79. Dessein R, Gironella M, Vignal C, et al. Toll-like receptor 2 is critical for induction of Reg3b expression and intestinal clearance of Yersinia pseudotuberculosis. Gut. 2009;58(6). doi:10.1136/gut.2008.168443
80. van Ampting MTJ, Loonen LMP, Schonewille AJ, et al. Intestinally secreted c-type lectin Reg3b attenuates salmonellosis but not listeriosis in mice. Infect Immun. 2012;80(3). doi:10.1128/IAI.06165-11
81. Wang L, Fouts DE, Stärkel P, et al. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation. Cell Host Microbe. 2016;19(2). doi:10.1016/j.chom.2016.01.003
82. Averitt DL, Eidson LN, Doyle HH, Murphy AZ. Neuronal and glial factors contributing to sex differences in opioid modulation of pain. Neuropsychopharmacology. 2019;44(1). doi:10.1038/s41386-018-0127-4
83. Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol. 2021;61. doi:10.1016/j.yfrne.2021.100912