[1] Bantis F , Ouzounis T , Radoglou K . Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success[J]. Scientia Horticulturae, 2016, 198:277-283.
[2] Olle M, Virsile A. The effects of light-emitting diode lighting on greenhouse plant growth and quality[J]. Agricultural and Food Science, 2013, 22(2): 223-234.
[3] Lin K, Huang M, Huang W, et al. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata)[J]. Scientia Horticulturae, 2013: 86-91.
[4] Wojciechowska R, Dlugoszgrochowska O, Kolton A, et al. Effects of LED supplemental lighting on yield and some quality parameters of lamb's lettuce grown in two winter cycles[J]. Scientia Horticulturae, 2015, 187(187): 80-86.
[5] Pust P, Schmidt P J, Schnick W, et al. A revolution in lighting[J]. Nature Materials, 2015, 14(5): 454-458.
[6] Uheda K, Hirosaki N, Yamamoto Y, et al. Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2+ , for White Light-Emitting Diodes[J]. Electrochemical and Solid State Letters, 2006, 9(4).
[7] Niewa R, Jacobs H. Group V and VI Alkali Nitridometalates: A Growing Class of Compounds with Structures Related to Silicate Chemistry[J]. Chemical Reviews, 1996, 96(6): 2053-2062.
[8] Zhou Z, Zhou N, Xia M, et al. Research progress and application prospects of transition metal Mn4+-activated luminescent materials[J]. Journal of Materials Chemistry C, 2016, 4(39): 9143-9161.
[9] Li Y, Qi S, Li P, et al. Research progress of Mn doped phosphors[J]. RSC Advances, 2017, 7(61): 38318-38334.
[10] Millard R L, Peterson R C, Hunter B K. Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data[J]. American Mineralogist, 1995, 80(9-10): 885-896.
[11] Shannon R D, Prewitt C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925-946.
[12] Medic M, Brik M G, Dražic G, et al. Deep-Red Emitting Mn4+ Doped Mg2TiO4 Nanoparticles[J]. Journal of Physical Chemistry C, 2015, 119(1): 724-730.
[13] Venturini F , Baumgartner M , Borisov S . Mn4+-Doped Magnesium Titanate—A Promising Phosphor for Self-Referenced Optical Temperature Sensing[J]. Sensors, 2018, 18(3).
[14] Li S, Wang L, Hirosaki N, et al. Color Conversion Materials for High‐Brightness Laser‐Driven Solid‐State Lighting[J]. Laser & Photonics Reviews, 2018, 12(12): 1800173.
[15] Ten J G, Orts M J, Saburit A, et al. Thermal conductivity of traditional ceramics. Part I: Influence of bulk density and firing temperature[J]. Ceramics International, 2010, 36(6): 1951-1959.
[16] Srivastava A M, Beers W W. Luminescence of Mn4+ in the distorted perovskite Gd2MgTiO6[J]. Journal of The Electrochemical Society, 1996, 143(9): L203-L205.
[17] Dey S, Ricciardo R A, Cuthbert H L, et al. Metal-to-metal charge transfer in AWO4 (A= Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure[J]. Inorganic chemistry, 2014, 53(9): 4394-4399.
[18] Zhang S , Hu Y , Duan H , et al. An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs[J]. Journal of Alloys and Compounds, 2017, 693:315-325.
[19] Paradiso R, Meinen E, Snel J F H, et al. Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose[J]. Scientia Horticulturae, 2011, 127(4): 548-554.
[20] Racah G. Theory of complex spectra. II[J]. Physical Review, 1942, 62(9-10): 438.
[21] Tanabe Y, Sugano S. On the Absorption Spectra of Complex Ions. I[J]. Journal of the Physical Society of Japan, 1954, 9(5): 753-766 (1954)
[22] Tanabe Y, Sugano S. On the Absorption Spectra of Complex Ions II[J]. Journal of the Physical Society of Japan, 1954, 9(5): 753-766.
[23] Tanabe Y, Sugano S. On the Absorption Spectra of Complex Ions, III The Calculation of the Crystalline Field Strength[J]. Journal of the Physical Society of Japan, 1956, 11(8): 864-877.
[24] Brik M G, Camardello S J, Srivastava A M. Influence of covalency on the Mn4+ 2Eg→ 4A2g emission energy in crystals[J]. ECS Journal of Solid State Science and Technology, 2015, 4(3): R39-R43.
[25] Sekiguchi D, Nara J, Adachi S. Photoluminescence and Raman scattering spectroscopies of BaSiF6: Mn4+ red phosphor[J]. Journal of Applied Physics, 2013, 113(18): 183516.
[26] Xu Y K, Adachi S. Properties of Na2SiF6: Mn4+ and Na2GeF6: Mn4+ red phosphors synthesized by wet chemical etching[J]. Journal of Applied Physics, 2009, 105(1): 013525.
[27] Takahashi T, Adachi S. Mn4+ activated red photoluminescence in K2SiF6 phosphor[J]. Journal of The Electrochemical Society, 2008, 155(12): E183-E188.
[28] Adachi S, Takahashi T. Photoluminescent properties of K2GeF6: Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution[J]. Journal of Applied Physics, 2009, 106(1): 013516.
[29] Kasa R, Arai Y, Takahashi T, et al. Photoluminescent properties of cubic K2MnF6 particles synthesized in metal immersed HF/KMnO4 solutions[J]. Journal of Applied Physics, 2010, 108(11): 113503.
[30] Kasa R, Adachi S. Red and deep red emissions from cubic K2SiF6: Mn4+ and hexagonal K2MnF6 synthesized in HF/KMnO4/KHF2/Si solutions[J]. Journal of The Electrochemical Society, 2012, 159(4): J89.
[31] Arai Y, Adachi S. Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors[J]. Journal of luminescence, 2011, 131(12): 2652-2660.
[32] Murata T, Tanoue T, Iwasaki M, et al. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED[J]. Journal of luminescence, 2005, 114(3-4): 207-212.
[33] Aoyama M, Amano Y, Inoue K, et al. Synthesis and characterization of Mn-activated lithium aluminate red phosphors[J]. Journal of luminescence, 2013, 136: 411-414.
[34] Shao Q, Lin H, Hu J, et al. Temperature-dependent photoluminescence properties of deep-red emitting Mn4+-activated magnesium fluorogermanate phosphors[J]. Journal of alloys and compounds, 2013, 552: 370-375.
[35] Xu Y D, Wang D, Wang L, et al. Preparation and luminescent properties of a new red phosphor (Sr4Al14O25: Mn4+) for white LEDs[J]. Journal of alloys and compounds, 2013, 550: 226-230.
[36] Wu X X, Feng W L, Zheng W C. Investigations of EPR parameters for Cr3+ and Mn4+ ions in anatase (TiO2) crystals[J]. phys stat sol (b), 2007, 244(9): 3347-3351.
[37] Bryknar Z. Application of spectroscopic probes in study of ferroelectrics[J]. Ferroelectrics, 2004, 298(1): 43-48.
[38] Brik M G, Sildos I, Berkowski M, et al. Spectroscopic and crystal field studies of YAlO3 single crystals doped with Mn ions[J]. Journal of Physics: Condensed Matter, 2008, 21(2): 025404.
[39] Brik M G, Srivastava A M, Avram N M. Comparative analysis of crystal field effects and optical spectroscopy of six-coordinated Mn4+ ion in the Y2Ti2O7 and Y2Sn2O7 pyrochlores[J]. Optical Materials, 2011, 33(11): 1671-1676.
[40] Srivastava A M, Brik M G. Ab initio and crystal field studies of the Mn4+-doped Ba2LaNbO6 double-perovskite[J]. Journal of luminescence, 2012, 132(3): 579-584.
[41] Brik M G, Camardello S J, Srivastava A M. Influence of covalency on the Mn4+ 2Eg→ 4A2g emission energy in crystals[J]. ECS Journal of Solid State Science and Technology, 2015, 4(3): R39-R43.
[42] Brik M G, Srivastava A M. Electronic energy levels of the Mn4+ ion in the perovskite, CaZrO3[J]. ECS Journal of Solid State Science and Technology, 2013, 2(7): R148.
[43] Peng L , Chen W , Cao S , et al. Enhanced Photoluminescence and Thermal Properties of Size Mismatch in Mg2TixGe1-xO4:Mn4+ Deep-Red Phosphors[J]. Journal of Materials Chemistry C, 2019.
[44] Cao R, Ouyang X, Jiao Y, et al. Deep-red-emitting SrLa2Sc2O7: Mn4+ phosphor: Synthesis and photoluminescence properties[J]. Journal of Alloys and Compounds, 2019, 795: 134-140.
[45] Senden T, van Dijk-Moes R J A, Meijerink A. Quenching of the red Mn 4+ luminescence in Mn 4+-doped fluoride LED phosphors[J]. Light: Science & Applications, 2018, 7(1): 8.
[46] Yang L, Chen M, Lv Z, et al. Preparation of a YAG: Ce phosphor glass by screen-printing technology and its application in LED packaging[J]. Optics letters, 2013, 38(13): 2240-2243.