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Abstract

Imitation learning (IL) is a powerful approach for acquiring optimal policies
from demonstrated behaviors. However, applying IL to a large group of agents
is arduous due to the exponential surge in interactions with an increase in
population size. Mean Field Theory provides an efficient tool for analyzing multi-
agent problems by gathering information at the population level. Although the
approximation is tractable, restoring mean field Nash equilibria (MFNE) from
demonstrations is challenging. Furthermore, many real-world problems, including
traffic network equilibrium induced by public routing recommendations and pric-
ing equilibrium of goods on E-commerce platforms, cannot be explained by the
classic MFNE concept. In both cases, the intervention of the platform introduces
correlation devices to the equilibrium. To address this issue, we propose a novel
solution concept called Adaptive Mean Field Correlated Equilibrium (AMFCE)
that generalizes MFNE. We establish a framework based on IL and AMFCE
that recovers the AMFCE policy from real-world demonstrations. Our framework
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characterizes mean-field evolution using signatures from the rough path theory,
and it has the significant benefit of recovering both the equilibrium policy and
correlation device from data. We test our framework against state-of-the-art IL
algorithms for mean field games (MFGs) on several tasks, including a real-world
traffic flow prediction problem. Our results demonstrate the effectiveness of our
proposed method and its potential for predicting and explaining large population
behavior under correlated signals.

Keywords: Mean field game, Imitation learning, Correlated equilibrium, Adversarial
learning

1 Introduction

Imitation Learning (IL) has gained traction as a powerful approach for learning desired
behavior through expert demonstrations [11]. However, in scenarios involving a large
population of agents, the exponential increase in interactions and curse of dimensional-
ity render existing IL algorithms inadequate. This limitation has practical implications
for real-world applications such as traffic management [3], ad auctions [9], and social
behaviors between game bots and humans [13]. Mean field theory provides a viable
alternative, offering an analytically feasible and practically efficient approach for ana-
lyzing multi-agent games in systems with homogeneous agents [9, 28]. In mean field
game (MFG) settings, the states of the entire population can be effectively summa-
rized into an empirical state distribution due to homogeneity, reducing the problem
to a game between a representative agent and an empirical distribution.

Current literature on mean-field IL assumes that expert demonstrations are sam-
pled from the classic mean field Nash equilibrium (MFNE) [27, 6]; however, this
framework is not general enough to accommodate many real-world situations where
external and correlated signals influence the behavior of the entire population. For
example, this occurs when drivers receive routing recommendations from Google
Maps or Apple Maps, or when individual sellers receive recommendations from an
E-commerce platform on setting prices for their products. In both cases, a mediator
or coordinator recommends decisions, but individual agents seeking greedy decisions
could deviate from the recommendation if they find a better option based on available
information, introducing correlations among the behaviors of individual agents.

Therefore, a more general equilibrium concept is needed before we take a step
further to learn from expert demonstrations. Inspired by the concept of correlated
equilibrium (CE) for stateless game [2], there are recent developments on mean field
correlated equilibrium (MFCE) with state dynamics. Campi and Fischer assume that
a mediator recommends the same stochastic policy to the entire population, resulting
in a limited equilibrium set which is the same as the classic MFNE [4]. In addition,
it is often more practical for the mediator to recommend an action rather than a
stochastic policy to individuals (see the traffic routing and e-commerce examples).
Muller et al. assume that the mediator recommends a deterministic policy (sampled
from some distribution over the deterministic policy space) to each individual [20].
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This formulation is also rather limited in terms of describing the behaviors of many
real-world applications and enabling sufficient flexibility of the population behavior.

Both MFCE concepts assume a fixed correlated signal, which is a recommended
policy at the start of the game, making it time-independent. However, this assump-
tion is impractical as real-world situations such as routing recommendations in traffic
management and E-commerce pricing depend on real-time variables like weather and
supply-demand imbalances. A more general and practical setting involves establishing
a framework where the mediator can sample a stochastic policy based on some time-
dependent signals and recommend actions for each individual. This exact framework is
explored in this paper. (For a concrete example demonstrating the greater generality
of our equilibrium concept over that proposed by Muller et al. [20], refer to Appendix
C.)

In light of the limitations observed in the existing MFCE concepts and mean-field
IL methods, we introduce a novel MFCE framework dubbed as the ”Adaptive Mean
Field Correlated Equilibrium (AMFCE).” This approach incorporates the notion of
time-varying correlated signals to enable individual agents to flexibly adjust their
beliefs regarding the unobserved correlated signal. Building upon the AMFCE frame-
work, we introduce a new IL framework, namely the ”Correlated Mean Field Imitation
Learning (CMFIL)” approach. This method allows for the recovery of not just the
policy, but also the correlation device, which is the distribution used to sample the
correlated signal.

The generality and flexibility of AMFCE allow CMFIL framework to predict and
explain more real-world scenarios. Our framework has the following important and
novel ingredients:

• Ingredient One: Novel MFCE concept with time-dependent correlated signals and
adaptive belief updates from individual agents. In this paper, we propose a new
MFCE framework (called AMFCE) that the mediator recommends an action sam-
pled from a stochastic policy for each agent at every time step. This is a more
general and flexible framework compared to previous works on the MFCE [20, 4].
We prove the existence of AMFCE solution under mild conditions and prove that
MFNE is a subclass of AMFCE.

• Ingredient Two: Using signatures from rough path theory to efficiently represent
mean-field evolution. In practice, mean field information is often unattainable and
approximating it through its empirical distribution can prove to be computationally
expensive. As a solution, we leverage signatures from the rough path theory to
represent the mean-field evolution in a computationally efficient manner that can
be seamlessly integrated with neural network training architectures. By employing
this technique, policies can be recovered without requiring access to the underlying
mean field.

To the best of our knowledge, this paper presents the first instance where the
MFCE framework is investigated while incorporating a correlation device that provides
time-varying recommendations and allows for adaptive belief updates by individual
agents.
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In addition, the performance of our proposed framework is demonstrated by
comparing it with the state-of-the-art imitation learning algorithms for MFGs on var-
ious tasks, including a real-world traffic flow prediction problem. Our experimental
results show that our framework outperforms the baseline in all tasks. Moreover, our
framework is also suitable for solving MFNE as it is a subclass of AMFCE.

2 Related work

Our research contributes to the extensive body of multi-agent imitation learning
(MAIL). One line of MAIL research has extended single-agent IL algorithms to the
Markov game [24, 29, 12]. However, these algorithms face scalability challenges due to
the exponential increase in agent interactions as the number of agents increases. To
address this challenge, Yang et al. proposed a multi-type mean field approximation
that approximates Nash equilibrium in Markov games [26]. However, this approach
does not consider the MFG and MFNE, and it decouples the interdependence between
mean field flow and policy.

Yang et al. proposed a method to infer the MFG model through inverse reinforce-
ment learning (IRL), assuming that the equilibrium behind the demonstrations is the
mean field social optimum (MFSO), which only holds for fully cooperative settings
[27]. Chen et al. extended this method to mixed cooperative-competitive settings by
assuming that the demonstrations are sampled from MFNE and its variant [6, 7].
However, these methods do not consider the correlation between agents.

Campi et al. proposed the MFCE concept, which introduces a mediator that recom-
mends the same stochastic policy to the entire population, while Muller et al. proposed
the MFCE concept assuming that the mediator recommends a deterministic policy
to each agent. However, both concepts rely on the assumption that time-independent
correlated signals are realized at the beginning of the game, which does not hold in
many real-world scenarios. For instance, central platforms such as traffic networks and
E-commerce marketplaces, as mentioned in Section 1 introduce correlations that vary
over time, making the MFCE concepts impractical for modeling such settings.

To address this limitation, we propose a novel mean field equilibrium concept,
AMFCE. This concept allows the correlated signals provided by the mediator to be
time-dependent, making it more flexible and general than the existing MFCE concepts.
This flexibility accommodates real-world scenarios with varying correlated signals
introduced by the mediator.

3 Preliminary

3.1 Classic mean field Nash equilibrium

This subsection introduces the classic framework of MFG and the concept of MFNE.
The classic MFG models a game between a representative agent and the state
distribution of all the other agents.

Denote P(X ) as the set of probability distributions over X and denote T =
{0, 1, · · · , T} as a set of time indexes. At time t, after the representative player chooses
her action at according to some measurable policy πt : S → P(A), she will receive a
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deterministic reward r(st, at, µt) and her state will evolve according to current state
st ∈ S and P (·|st, at, µt) , where µt ∈ P(S) represents the population state distribu-

tion and S is finite. Intuitively, µt(s) = limN→∞

∑N
i=1

1
{si

t
=s}

N
can be viewed as the

limit of the empirical distribution of an homogeneous N -agent game where sit is the
state of agent i at time t and 1{e} is an indicator function (with value 1 if expression
e holds and 0 otherwise). Here P : S × A × P(S) → P(S) is the transition kernel for
the state dynamics.

For fixed mean-field information µµµ = {µt}
T
t=0, the objective of the representative

agent is to solve the following decision-making problem over all admissible policies
πππ = {πt}

T
t=0:

maximizeπππ Vk(s,πππ,µµµ) := E

[

T
∑

t=k

γtr(st, at, µt)

∣

∣

∣

∣

sk = s

]

subject to st+1 ∼ P (·|st, at, µt), at ∼ πt(st),

(Classic MFG)

The Mean-field Nash Equilibrium (MFNE) is defined as the following.
Definition 1 (MFNE). In (Classic MFG), a player-population profile (πππ⋆, µµµ⋆) is
called an MFNE (under initial state µ0) if

1. (Single player side) For any policy πππ, any time index t ∈ T , and any initial state
s ∈ S, Vt (s,πππ

⋆,µµµ⋆) ≥ Vt (s,πππ,µµµ
⋆) .

2. (Population side) {µ∗
t }
T
t=0 satisfies µ

∗
t (·) =

∑

s∈S,a∈A P (·|s, a, µ
∗
t−1)π

∗
t−1(a|s)µ

∗
t−1(s)

with initial condition µ∗
0 = µ0.

The single player side condition captures the optimality of πππ⋆, when the popu-
lation side is fixed. The population side condition ensures the ”consistency” of the
solution by guaranteeing that the state distribution flow of the single player matches
the population state sequence µµµ⋆ := µ⋆t

T
t=0.

3.2 Imitation learning

LetM = (S,A, P, r, µ0, γ, T ) represent a single-agent Markov decision process (MDP).
In this notation, S and A denote the state and action spaces, respectively. The transi-
tion kernel for the state dynamics is denoted by P : S×A → P(S). The reward function
is denoted as r : S×A → R. The initial distribution of the initial state s0 is denoted as
µ0. The discount factor is represented by γ ∈ (0, 1], and T corresponds to the horizon.

The expected return of a policy π is defined as J(π) = E

[

∑T
t=0 γ

tr(st, at)
]

, where the

expectation is taken with respect to s0 ∼ µ0, at ∼ π(·|st), and st+1 ∼ P (·|st, at).
In the IL setting, the reward function is unknown, but a set of demonstration

trajectories under expert policy πE are provided. The goal of imitation learning is to
recover the expert policy πE using the demonstration trajectories.

IRL is a subclass of IL and it solves the problem in two steps. It first finds a reward
function r̃ that rationalizes the expert policy πE .

r̃ = max
r

(

min
π

−H(π) + J(π)
)

− J(πE)
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Then a recovered policy is extracted from the reward function r̃ by a reinforcement
learning method.

Generative Adversarial Imitation Learning (GAIL) [10] treats IL as a mini-max
game and it is trained through the Generative Adversarial Network (GAN). Note that
GAIL extracts a policy directly from the expert demonstrations and does not aim
at recovering a reward function. In particular, it introduces a discriminator Dω to
differentiate the state-action pairs from πE and other policies. The recovered policy
πθ, parameterized by θ, plays the role of a generator. It aims at generating state-action
pairs that are difficult for Dω to differentiate. The target function of GAIL is thus
defined as

max
θ

min
w

E(s,a)∼πθ
[log (Dω(s, a))] + E(s,a)∼πE [log (1−Dω(s, a))] .

where E(s,a)∼πθ
is expectation taken with respect to st+1 ∼ P (·|st, at), at ∼ πθ(·|st),

s0 ∼ µ0 and E(s,a)∼πE is expectation taken with respect to st+1 ∼ P (·|st, at), at ∼

πE(·|st), s0 ∼ µ0.

4 Problem formulation

This section introduces a novel adaptive mean-field correlated equilibrium (AMFCE)
framework and establishes the existence of equilibria solutions under mild conditions.
Our analysis demonstrates that the solution set of AMFCE is richer than the well-
known MFNE.

4.1 Adaptive mean field correlated equilibrium (AMFCE)

To incorporate the correlations introduced by central platforms in the traffic network
and E-commerce marketplace examples mentioned in Section 1, we introduce a medi-
ator (or central agent) who samples a correlated signal zt ∈ Z at each time t. Here,
Z denotes a finite signal space, and zt may represent some global conditions such as
the weather on day t for the traffic network example or the supply-demand imbalance
in month t for the E-commerce marketplace example. Before discussing the AMFCE,
we first introduce the concepts of behavioral policy and correlation device.
Definition 2. For each time t, the behavioral policy πt : Z × S → ∆(A) maps from
the signal and state spaces to the simplex over the action space. Given the correlated
signal z ∈ Z and an action a ∼ πt(·|s, z) will be independently sampled as a private
recommendation for each agent at state s.
Definition 3. The per-step correlation device ρt ∈ ∆(Z) is a publicly known distri-
bution over the space of correlated signal, from which the mediator will sample the
correlated signal at time step t. Denote ρρρ = {ρt}

T
t=0 as correlation device over the

entire horizon.
At each time step t, a correlated signal zt is sampled from the per-step correlation

device ρt. Subsequently, a recommended action at is sampled independently from
the behavior policy πt(·|st, zt) and sent to each agent at state st. Importantly, this
recommended action at is private and only available to the agent. Mathematically,
denote It = {ρt, at, πt(·, ·, ·), st, zt−1, µt−1} as the information available to the agent
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at the beginning of step t. And I0 = {ρ0, a0, π0(·, ·, ·), s0}. Note that the agent only
observes the functional form of πt but can not observe the correlated signal zt nor
the recommended actions for other agents. Based on the information It, the agent
will take an action a′t (which may be different from the mediator’s recommendation),
and then the agent at state st will transit to the next state according to distribution
P (·|st, a

′
t, µt) ∈ P(S) given current mean field µt, which follows:

µt(·) =
∑

a∈A

∑

s∈S

µt−1(s)P (·|s, a, µt−1)πt−1(a|s, zt−1). (1)

This implies that, given µt−1 and πt−1, µt is fully determined by zt−1. After receiving
the recommendation action at, the agent can predict the correlated signal by

ρpredt (zt = z|It) =
ρt(z)πt(at|st, z)

∑

z′∈Z ρt(z
′)πt(at|st, z′)

. (2)

Based on the available information It at time t, the agent can then update the
prediction on the mean field distribution of the next time-step for each possible signal
z:

µpred
t+1 (·|It, z) =

∑

a∈A

∑

s∈S

µt(s)P (·|s, a, µt)πt(a|s, z) := Φ(µt, πt, z). (3)

The Q function Qπππt (s, a, µ, z;πππ
′) for individual agent is defined as follows:

Qπππt (s, a, µ, z;πππ
′) =r(s, a, µ)

+ γEπππ′

[

T
∑

i=t+1

γi−t−1r(si, ai, µi)

∣

∣

∣

∣

∣

(st, at, µt, zt) = (s, a, µ, z)

]

,

where Eπππ′ is the expectation taken with respect to zi ∼ ρi(·), ai ∼ πi(·|si, zi), si+1 ∼
P (·|si, ai, µi), ∀i ∈ {t + 1, t + 2, · · · , T}. We can verify that the Q function satisfies
the following Bellman equation:

Qπππt (s, a, µ, z;πππ
′) =r(s, a, µ)

+ γE

[

Qπππt+1(s
′, a′,Φ(µ, π′

t, z), z
′;πππ′

)

∣

∣

∣

∣

(st, at, µt, zt) = (s, a, µ, z)

]

,

(4)

where the expectation is taken with respect to z′ ∼ ρt+1(·), s
′ ∼ P (·|s, a, µ), a′ ∼

πt+1(·|s, z
′).

Similarly, we define the optimal Q-function Q∗
t (s, a, µ, z;πππ

′) as the Q function asso-
ciated with the optimal individual policy πππ∗ given population behavior πππ′. It is easy
to show that Q∗ satisfies the following Bellman equation:

Q∗
t (s, a, µ, z;πππ

′) =r(s, a, µ)
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+ γmax
a′∈A

E

[

Q∗
t+1(s

′, a′,Φ(µ, π′
t, z), z

′;πππ′)

∣

∣

∣

∣

(st, at, µt, zt) = (s, a, µ, z)

]

,

(5)

where the expectation is taken with respect to z′ ∼ ρt+1(·), s
′ ∼ P (· | s, a, µt).

It is worth noting that if the policy of population π′π′π′ is fixed, Q∗
T (s, a, µ, z;πππ

′) ≥
QπππT (s, a, µ, z;πππ

′) for any πππ. Then by induction, it holds that Q∗
t (s, a, µ, z;πππ

′) ≥
Qπππt (s, a, µ, z;πππ

′) for all t ∈ T .
To introduce the concept of AMFCE, we define the set of swap function U :=

{u : A → A}, namely u a function that modifies an action a to an action u(a). Let
∆t(s, µ, u;πππ,ρρρ) = E

[

Qπππt (s, u(a), µ, z;πππ) − Qπππt (s, a, µ, z;πππ)
]

, u ∈ U denote the margin
of Q function of that agent takes action u(a) when a recommendation a is provided by
the mediator, where the expectation is taken with respect to z ∼ ρt(·), a ∼ πt(·|s, z).
Definition 4. The profile (πππ⋆, ρρρ) is composed of the time-varying stochastic pol-
icy πππ⋆ = {π⋆t }

T
t=0 and the correlation device ρρρ is an adaptive mean field correlated

equilibrium (AMFCE) if

• (Single agent side) No agent has an incentive to unilaterally deviate from the
recommendation action after predicting the z by (2), i.e.

∆t(s, µ
⋆
t , u;πππ

⋆, ρρρ) ≤ 0, ∀u ∈ U , ∀s ∈ S, ∀t ∈ T .

• (Population side) {µ∗
t }
T
t=0 satisfies µ

∗
t (·) =

∑

s∈S,a∈A P (·|s, a, µ
∗
t−1)π

∗
t−1(a|s, zt−1)µ

∗
t−1(s)

given the correlated signals {zt}
T
t=0 and with initial condition µ∗

0 = µ0.

Below is an example that illustrates the concept of AMFCE and highlights its
differences from pre-existing MFCE concepts.
Example 1. The traffic network in Figure 2 consists of three cities. Tourists located
in city A are expected to visit either city B or C during a two-day vacation period..
These tourists rely on an online mapping application that suggests either city L or R
based on real-time weather information z. This scenario can be modeled as a mean
field game with state space S = {C,L,R} and the action space A = {L,R}. The
initial mean field is given by µ0(C) = 1, and the reward function is defined as
r(s, a, µ) = 1{s=L}µ(L) + 1{s=R}µ(R). Due to the possibility of unexpected road clo-
sures, the environment transition is non-deterministic. The environment transition is
as following:

P (s1 = R | s0 = C, a = R) = 1, P (s1 = L | s0 = C, a = R) = 0,

P (s1 = R | s0 = C, a = L) = 0, P (s1 = L | s0 = C, a = L) = 1,

P (s1 = R | s0 = L, a = R) =
3

4
, P (s1 = L | s0 = L, a = R) =

1

4
,

P (s1 = L | s0 = L, a = L) = 1, P (s1 = R | s0 = L, a = L) = 0,

P (s1 = L | s0 = R, a = L) =
3

4
, P (s1 = R | s0 = R, a = L) =

1

4
,

P (s1 = R | s0 = R, a = R) = 1, P (s1 = L | s0 = R, a = R) = 0.
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𝑠1 𝑧1 𝑎1 𝑠2 𝑧2
𝜇1 𝑎1 ⋯

(a) Structure of AMFCE. In the AMFCE framework, the correlated signals are realized at
each time step. After sampling the correlated signal zt at time step t from the correlation
device ρt, the action at is sampled from the policy πt(at|st, zt) for each agent at state st

as an individual recommendation. Agent can only observe the recommended action. As zt

cannot be realized until time step t, the agent must adaptively update her belief in zt.

𝑠1
𝑧

𝑎1 𝑠2𝜇1 𝑎1 ⋯

(b) Structure of MFCE. In the MFCE framework, the correlated signal z is realized at the
start of the game. A sequence of actions, or a deterministic policy, is then recommended for
each agent as an individual recommendation. Consequently, the agent can infer the correlated
signal z at the start of the game without the need for adaptive updates to her belief.

Fig. 1: The structures of AMFCE and MFCE.

The following recommendations are given by the online mapping application in
an AMFCE. At time step t ∈ T = {0, 1}, a random variable z is sampled from the
correlated signal space Z = {0, 1} with equal probabilities, i.e., ρt(z = 0) = ρt(z =
1) = 0.5. The online mapping application recommends an action for each agent based
on the observed value of z and the policy π. The policy is defined as follows:

π(a = L|s = C, z = 0) = 2/3, π(a = R|s = C, z = 0) = 1/3,

π(a = L|s = C, z = 1) = 1/3, π(a = R|s = C, z = 1) = 2/3,
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City C
City L

City R

Fig. 2: The traffic network is comprised of three cities, with tourists situated in city
A expected to visit either city B or C over a two-day vacation period. However, the
transition dynamics are stochastic due to the possibility of unforeseen road closures.

π(a = L|s = L, z = 0) = 1, π(a = R|s = L, z = 0) = 0,

π(a = L|s = L, z = 1) = 1/9, π(a = R|s = L, z = 1) = 8/9,

π(a = L|s = R, z = 0) = 8/9, π(a = R|s = R, z = 0) = 1/9,

π(a = L|s = R, z = 1) = 0, π(a = R|s = R, z = 1) = 1.

It can be verified that tourists have no incentive to deviate from the recommendation,
so an AMFCE is achieved.

This example cannot be explained by existing MFCE concepts due to two main
reasons. Firstly, the action recommended by the online mapping application (i.e., the
city to visit) is determined after the realization of a time-dependent correlated signal
z (i.e., real-time weather information), while existing MFCE concepts assume that
the correlated signal z is time-independent. Secondly, the recommendation system of
the online mapping application for suggesting the next city to visit by each tourist
is based on the present location of tourists and correlated weather information. As
a result, recommending actions (i.e., the next city to visit) is more common than
recommending policies. Therefore, this scenario is not amenable to prevailing MFCE
concepts, primarily due to the time-dependent correlated signal and the conventional
nature of the recommendation system.

It is important to note that the AMFCE solution is not a classic MFNE. The poli-
cies for both AMFCE and MFNE in this example are shown in Figure 3. Furthermore,
Corollary 1 demonstrates that all MFNE policies are AMFCE policies.

4.2 Properties of AMFCE

This section focuses on the properties of AMFCE, including the conditions to
guarantee the existence and its relationship to classic MFNE.
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LL

LR

RL

RR

AMFCE policies

Fig. 3: The visualization of the policies obtained by our proposed AMFCE framework
and the MFNE framework for Example 1. The space of policies that are AMFCE
policies but not MFNE policies under the correlated device ρ(z = 0) = ρ(z = 1) = 0.5
is plotted, while the policies that are both AMFCE policies and MFNE policies are
marked with yellow dots. As established in Corollary 1, all MFNE policies are also
AMFCE policies, which implies that AMFCE is a more general equilibrium concept
than MFNE.

In order to provide the existence of AMFCE solutions, we define the best response
operator

BR(πππ;ρρρ) = argmax
πππ′

Eπππ′,ρρρ

[

T
∑

t=0

γtr(st, at, µt)

]

,

where the expectation is taken with respect to zt ∼ ρt(·), st ∼
P (·|st−1, at−1, µt−1), at ∼ π′

t(·|st, zt), µt = Φ(µt−1, πt−1, zt−1). Unless other-
wise stated, the expectation Eπππ,ρρρ is taken with respect to zt ∼ ρt(·), st ∼
P (·|st−1, at−1, µt−1), at ∼ πt(·|st, zt), µt = Φ(µt−1, πt−1, zt−1). Then the existence of
the solution is derived using Kakutani’s fixed point theorem [14] with the operator
BR. We next provide a sufficient condition for the existence of AMFCE.
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Theorem 1. If the functions r(s, a, µ) and P (s′|s, a, µ) are bounded and continuous
with respect to µ, there exists an AMFCE solution.

Proof sketch. (The full proof is deferred to Appendix A.2.) We first prove that BR has
a closed graph (Lemma 2), and BR(πππ;ρρρ) is a convex set given πππ and ρρρ. (Lemma 3).
According to Kakutani’s fixed point theorem, there exists π∗ = BR(π∗;ρρρ). Therefore,
∆t(st, µt, u;πππ

∗) ≤ 0 ∀u ∈ U , ∀st ∈ S, ∀t ∈ T and µµµ = {µt}
T
t=0 satisfies the population

side condition of AMFCE.

The AMFCE is a more general equilibrium concept than MFNE, which is
illustrated in Corollary 1.
Corollary 1. If (πππ,µµµ) is an MFNE, then it leads to an AMFCE solution (πππ,ρρρ) with
|Z| = 1 and ρt(z) = 1 for all t ∈ T where z ∈ Z is the single element in the signal
space.

The proof is deferred to Appendix A.3. This proposition implies that the MFNE
is a subset of AMFCE as the example in Example 1 shows that AMFCE may not be
an MFNE.

5 Imitation learning for mean field game

This section proposes a new framework based on imitation learning to recover AMFCE
from collected expert demonstrations. To emphasize the role of unknown reward func-
tion in imitation learning, we use MFRL(r,ρρρ) to denote the policy of AMFCE under
the reward function r and correlation device ρρρ:

MFRL(r,ρρρ) = {(πππ,ρρρ) ∈ ΠAMFCE} (6)

The constraint on the AMFCE set makes finding AMFCE policy challenging. To
address this, we provide an equivalent formulation in Proposition 2 and derive a
Lagrangian reformulation of (6).

5.1 Correlated mean field imitation learning

We denote J(πππ,ρρρ) = E

[

∑T
t=0 γ

tr(st, at, µt)
]

, and R(a0:T ,πππ,ρρρ) as the margin of

expected return between choosing actions a0:T := {at}t∈T and policy πππ under the
correlation device ρρρ:

R(a0:T ,πππ,ρρρ) ≜ E

[

T
∑

t=0

γtr(st, at, µt)
∣

∣

∣
a0:T

]

− J(πππ,ρρρ),

where the expectation is taken with respect to zt ∼ ρt(·), st ∼ P (·|at−1, st−1, µt−1).
And µt = Φ(µt−1, πt−1, zt−1). Then we can get an equivalent constraint of AMFCE.
Proposition 2. (πππ,ρρρ) is an AMFCE solution if and only if R(a0:T ,πππ,ρρρ) ≤ 0, ∀a0:T ∈
AT .

The proof is deferred to Appendix A.4.
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Algorithm 1 Correlated mean field imitation learning (CMFIL)

Require: Expert trajectories DE = {s0, z0, a0, s1, z1, a1, . . . sT , zT , aT }
Initial mean field µ0, The weight of gradient penalty β.
for each iteration do

Obtain trajectories from (πππ,ρρρ) by the process: s0 ∼ µ0, at ∼ πθ(·|st, zt), st+1 ∼

P (· | st, µt), zt ∼ ρϕt (·);
Approximate µt with the signature µ̂t = S({zi}

t
i=0) using (11);

for i in {0, 1, 2, . . . } do
Update ω to increase the objective

Eπππ,ρρρE
[

T
∑

t=0

γt logDω(st, at, µ̂t)
]

+ EπππE ,ρρρE

[ T
∑

t=0

γt log
(

1−Dω(st, at, µ̂t)
)

]

end for
for t in {0, 1, 2, . . . } do

Update θ by Actor-Critic algorithm with small step size:

E

[

∇θρ
ϕ
t (zt)π

θ
t (at|st, zt)Q

πππθ

t (st, at, µ̂t, zt;πππ)
]

where the expectation is taken with respect to s0 ∼ µ0, at ∼ πθ(·|st, zt), st+1 ∼

P (· | st, µt), zt ∼ ρϕt (·);
Update ϕ with (10);

end for
end for
return Policy πππθ, correlation device πππϕ.

5.2 AMFCE inverse reinforcement learning

It is computationally challenging to handle the constraints in the Proposition 2. Com-
pared to the original formulation (6), it is easier to work with a dual representation
without constraints:

L(πππ,ρρρ, λ, r) ≜
∑

τk∈DE

λ(τk)

(

E

[ T
∑

t=0

γtr(st, at, µt)

]

− J(πππ,ρρρ)

)

(7)

where DE is a set of action-signal sequence τk = {a0, z0, a1, z1, a2, z2, · · · , aT , zT }.
We show that (7) captures the difference of expected returns between two policies by
selecting λ as follows.
Theorem 3. For policy πππ and correlation device ρρρ, let λ∗πππ(τk) =
∏T
t=0 ρt(zt)π

∗
t (at|st, zt) be the probability of generating the sequence τk if the individual
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policy is πππ∗. Then we have

L(πππ,ρρρ, λ∗πππ, r) = E[

T
∑

t=0

γtr(st, at, µt)]− J(πππ,ρρρ)

where the expectation is taken with respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, µt−1),
at ∼ π∗

t (·|st, zt), µt = Φ(µt−1, πt−1, zt−1).
The proof of Theorem 3 is deferred to Appendix A.5. In the setting of imitation

learning, the reward signal is not accessible. To construct a suitable reward function
rationalizing the expert policy, we need to define a suitable AMFCE inverse rein-
forcement learning (AMFCE-IRL) operator which designs a reward to maximize the
margin of expected return between expert policy and the other policies:

AMFCE-IRLψ(π
E , ρρρE) = argmaxr

(

− ψ(r)−max
πππ

L(πππE , ρρρE , λ∗πππ, r)
)

, (8)

(πππE , ρρρE) ∈ ΠAMFCE is the AMFCE from which expert demonstrations are sampled.
We choose a special regularizer [10]:

ψGA(r) ≜

{

E[
∑T

t=0 γ
tg(r(st, at, µt))] if r > 0

+∞ otherwise
,

where

g(x) =

{

x− log (1− e−x) if x > 0

+∞ otherwise
.

After getting the reward function r̃ = AMFCE-IRL(πππE , ρρρE), we can characterize the
AMFCE policy MFRL(r̃, ρρρE) with the learned r̃.
Proposition 4. The policy πππ learned on the reward function recovered by AMFCE-
IRL can be characterized as follows:

MFRL ◦AMFCE-IRLψ(πππ
E , ρρρE):= argmin

πππ
max
r
J(πππE , ρρρE)

− E

[ T
∑

t=0

γtr(st, at, µt)

]

− ψGA(r)

where the expectation is taken with respect to zt ∼ ρEt (·), st ∼ P (·|st−1, at−1, µt−1),
at ∼ πt(·|st, zt), µt = Φ(µt−1, π

E
t−1, zt−1).

The objective to recover AMFCE is defined as:

min
πππ

max
ω

Eπππ,ρρρE

[ T
∑

t=0

γt logDω(st, at, µt)

]

+ EπππE ,ρρρE

[ T
∑

t=0

γt log
(

1−Dω(st, at, µt)
)

]

(9)
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where Dω is the discriminator network parameterized with ω, with input (st, at, µt) and
output a real number in (0, 1]. The first expectation is taken with respect to zt ∼ ρEt (·),
st ∼ P (·|st−1, at−1, µt−1), at ∼ πt(·|st, zt), µt = Φ(µt−1, π

E
t−1, zt−1). The second expec-

tation is taken with respect to zt ∼ ρEt (·), st ∼ P (·|st−1, at−1, µt−1), at ∼ πEt (·|st, zt),
µt = Φ(µt−1, π

E
t−1, zt−1).

The proof is deferred to Appendix A.6. From a theoretical point of view, we
assume that neural network Dω has the capacity to approximate the reward function.
Under this assumption, the AMFCE (πππE , ρρρE) could be recovered by optimizing the
above objective (9). Note that simply applying GAIL to solve AMFCE cannot recover
ρρρE , so we derive ρρρ using a gradient descent method (with proof in Appendix A.7):
Proposition 5. If ρρρϕ is parameterized with ϕ, the gradient to optimize ϕ given state
s is

E
z∼ρφt (·)

[

∇ϕ log ρ
ϕ
t (z)Ea∼πt(·|s,z)Q

πππ
t (s, a, µ, z;πππ)

]

. (10)

Now we propose the imitation learning algorithm for AMFCE (Algorithm 1).

5.3 Representation of the mean field information

As the mean field appears in the input of discriminatorDω(s, a, µ) in (9), it is necessary
to find an efficient way to represent the mean field information.

In the Kolmogorov equation (1), the mean field flow {µt}
T
t=0 is deterministic given

fixed correlated signal sequence {zt}
T
t=0 and given the initial mean field distribution

µ0. Therefore, the mean field distribution µt can be characterized by zzz0:t = {zi}
t
i=0.

Motivated by this, we use the signatures of zzz0:t from the rough path theory [16, 18]
to represent the signal sequence and hence to characterize the mean field flow with
µ̂t = S(zzz0:t). The signatures provide a graduated summary of the path zzz0:t. Therefore,
the input of discriminator Dω in (9) could be replaced with (st, at, µ̂t). It is worth
noting that the signature has been recently applied to the field of machine learning
to extract characteristic features of sequential data in a non-parametric fashion [19,
21]. The utilization of signatures to encode historical information circumvents the
computational burden typically associated with tasks such as training recurrent neural
networks. In addition, the training stability can be significantly enhanced since the
mapping is invariant.
Definition 5. Let x = {x1, . . . , xL} with xi ∈ R

d, for all i and L ≥ 2. Denote
f : [0, 1] → R

d to be the continuous piecewise affine function such that f( i−1
L−1 ) = xi,

∀i ∈ {1, 2, . . . , L}.

S(f)0,1 = (1,M1, · · · ,Mn, . . .) (11)

where Mn =
∫

s<s1<···<sn<t
df
dt (s1)⊗ · · · ⊗ df

dt (sn)dt1 · · · dtn.

The signature of the path x is defined to be S(f)0,1, denoted as S(x).
Signature of sequential data includes infinite terms as shown in the (11), but for-

tunately, terms Mn enjoy factorial decay. In practice we select the first n terms of the
signature without losing crucial information of the data [15].
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Table 1: Results for numerical tasks.

Task Log Loss CMFIL MFIRL MFAIRL

Squeeze with
T = {0, 1, 2}

π0(· | s = ·, z = 0) 0.643 (0.000) 1.450 (2.857) 4.064 (0.879)
π0(· | s = ·, z = 1)) 0.647 (0.003) 3.245 (1.650) 4.144 (0.629)
π1(· | s = ·, z = 0) 0.020 (0.001) 1.072 (2.229) 6.934 (4.447)
π1(· | s = ·, z = 1) 0.045 (0.005) 7.871 (4.368) 1.027 (1.279)

Squeeze with
T = {0, 1}

π(· | s = C, z = 0) 0.648 (0.002) 3.828 (1.582) 4.067 (0.088)
π(· | s = C, z = 1) 0.638 (0.001) 2.009 (1.191) 10.074 (0.174)

RPS π(·|s = C, z = 0) 1.083 (0.000) 7.127 (0.753) 3.221 (1.330)

Flock

π(·|s = ·, z = 0) 0.002 (0.000) 5.591 (0.869) 12.430 (2.759)
π(·|s = ·, z = 1) 0.016 (0.003) 11.687 (1.158) 13.042 (1.533)
π(·|s = ·, z = 2) 0.045 (0.009) 7.500 (3.955) 10.065 (5.074)
π(·|s = ·, z = 4) 0.026 (0.003) 3.847 (3.967) 9.312 (4.711)

Task Log Loss
Logistic

Regression
Multinomial MaxEnt ICE

Squeeze with
T = {0, 1, 2}

π0(· | s = ·, z = 0) 4.484 (0.054) 0.686 (0.002) -
π0(· | s = ·, z = 1) 0.000 (0.000) 2.577 (0.149) -
π1(· | s = ·, z = 0) 7.091 (0.107) 0.282 (0.087) -
π1(· | s = ·, z = 1) 10.638 (0.163) 0.001 (0.001) -

Squeeze with
T = {0, 1}

π(· | s = ·, z = 0) 1.985 (0.165) 0.991 (0.102) 0.946 (0.073)
π(· | s = ·, z = 1) 2.139 (0.169) 2.947 (0.359) 0.648 (0.011)

RPS π 4.805 (0.131) 5.850 (0.306) 1.537 (0.019)

Flock

π(·|s = ·, z = 0) 0.000 (0.000) 1.383 (0.004) -
π(·|s = ·, z = 1) 7.887 (0.031) 1.127 (0.007) -
π(·|s = ·, z = 2) 18.339 (0.010) 0.951 (0.009) -
π(·|s = ·, z = 4) 35.253 (0.037) 1.264 (0.011) -

Table 2: The results of predicted traffic flow for Traffic Network. The metric is log
loss of each location.

CMFIL MFIRL MFAIRL

Lewisham 0.742 (0.011) 12.346 (0.294) 8.893 (2.302)
Hammersmith 0.897 (0.002) 9.853 (2.892) 6.485 (1.940)

Ealing 1.091 (0.001) 11.625 (0.435) 11.609 (1.202)
Redbridge 0.052 (0.011) 11.720 (0.633) 4.537 (4.544)
Enfield 0.394 (0.003) 11.750 (0.603) 9.871 (4.052)
Big Ben 1.599 (0.000) 7.482 (1.539) 12.477 (1.005)

6 Experiments

We evaluate the effectiveness of our algorithm in four environments: Sequential
Squeeze, RPS, Flock, and Traffic Flow Prediction.

We compare our proposed CMFIL framework with the existing mean field imitation
learning algorithms, MFIRL [6] and MFAIRL [7]. While MFIRL and MFAIRL aim
to recover MFNE without considering the correlated signal, we regard the correlated
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signal as an extension of the global state for their framework, allowing for a fair
comparison between all methods. It is important to note that our proposed method
is the first to recover both the policy and the correlated device from data, which is a
significant contribution. However, as MFIRL and MFAIRL can recover the policy, we
compare the quality of the learned policies for all methods. We focus on the difference
between the recovered policy and the ground truth policy, as shown in Table 1 and 2,
to evaluate the quality of the policy learned by each method.

We also compare CMFIL with MaxEnt ICE, smoothed multinomial distribution
over the joint actions and logistic regression [25]. As MaxEnt ICE is designed to recover
correlated equilibrium in matrix game, we only compare CMFIL with MaxEnt ICE on
tasks that can be reduced to matrix game, such as RPS and Sequential Squeeze with
T = {0, 1}. We use the log loss, Ea∼π(·|s,z)[− log(π̂(a|s, z))], to measure the difference
between the recovered policy π̂ and the ground truth π in all tasks. The Appendix B
contains more details about the experiments.

6.1 Tasks

We evaluate CMFIL on several tasks: Sequential Squeeze (Squeeze for short), Rock-
Paper-Scissors (RPS), Flock and a real-world traffic flow prediction task. The first
three experiments are numerical experiments. The traffic flow prediction task is to
predict the traffic flow a complex traffic network based on the real world data.

Squeeze: Sequential Squeeze is a game with multi-steps. The purpose to implement
this game is to verify the ability to recover expert policy through demonstrations
sampled from a multi-step game. We present a discrete version of this problem. The
state space is S = {0, 1, 2}. Let A = {0, 1} denote the action space. The horizon of
the environment is 3. The initial mean field is µ0(s = 2) = 1. The dynamic of the
environment is given by:

P (st+1 = 1 | st = ·, a = 1) =
3

4
, P (st+1 = 0 | st = ·, a = 1) =

1

4
,

P (st+1 = 1 | st = ·, a = 0) =
1

4
, P (st+1 = 0 | st = ·, a = 0) =

3

4

The reward function is

r(s, a, µ) = 1{s=L}µ(L) + 1{s=R}µ(R).

The results are shown in Table 1.
RPS : This experiment is a traditional mean field game task [5, 8, 7]. The dynamic

is deterministic:

P (st+1 | st, at, µt) = 1st+1=at (12)

The state space S = {C,R, P, S} and the action space A = {R,P, S}. At the beginning
of the game, all the agents are in the state C. The reward function is shown in the
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Fig. 4: The distribution of correlation device ρ recovered by CMFIL.

following

r(R, a, µt) = 2 · µt(S)− 1 · µt(P )

r(P, a, µt) = 4 · µt(R)− 2 · µt(S)

r(S, a, µt) = 2 · µt(P )− 1 · µt(R)

The demonstrations are sampled from MFNE, and the cardinality of the correlated
signal set is one. We use RPS to verify that the algorithm proposed can recover
the expert demonstrations sampled from MFNE, which also supports the results in
Corollary 1.
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Flock : The experiment is based on the movement of fish [22]. In nature, fish spon-
taneously align their velocity according to the overall movement of the fish school,
resulting in a stable movement velocity for the entire school. We simplify this setting
by defining a new dynamic as follows:

xt+1 = xt + vt∆t

The action space A = {0, 1, 2, 3} corresponding to four directions of velocity with unit
speed. The reward is

fflockβ (x, v, u, µ) = −

∥

∥

∥

∥

∫

R2d

(v − v′) dµ (x′, v′)

∥

∥

∥

∥

2

Traffic Flow Prediction: In the Traffic Flow Prediction task, we use the traffic data
of London from Uber Movement (https://movement.uber.com/?lang=en-US). This
dataset is publicly available, and the data is anonymized. The environment dynamic
is deterministic, and the expert demonstrations consist of traffic flow data. Our goal
is to predict traffic flow in a real-world traffic network consisting of six locations:
Lewisham, Hammersmith, Ealing, Redbridge, Enfield, and Big Ben. Given the large-
scale and high-complexity nature of this task, we compare the scalability of CMFIL
and MFIRL in this experiment.

6.2 Results

The results for numerical tasks are presented in Table 1. In general, CMFIL outper-
forms other methods. Supervised learning methods, such as logistic regression and
smoothed multinomial distribution, easily overfit and may outperform CMFIL in some
metrics but suffer from a higher loss than CMFIL in general. MFIRL and MFAIRL
show larger deviations and higher loss than CMFIL in Table 1 and Table 2. The results
demonstrate that MFIRL and MFAIRL cannot recover AMFCE, and they cannot
handle correlated signals appropriately. Although we consider correlated signals as an
extension of state, the rewards recovered by MFIRL and MFAIRL are biased because
the ground truth reward is independent of the correlated signal. Moreover, CMFIL
adds a regularizer ψ for the reward function to avoid overfitting, which also outper-
forms MFIRL and MFAIRL in RPS when expert demonstrations are sampled from
MFNE. MaxEnt ICE performs poorly because it has a limited reward function class
by assuming a linear reward structure. Figure 4 illustrates that CMFIL can recover
the correlation device with a fast convergence speed.

We use unity to visualize the tasks of Squeeze and Flock in this site https://sites.
google.com/view/mean-field-imitation-learning/.

7 Conclusion

We proposed AMFCE, a new equilibrium concept in the MFG, which is better suited
for real-world scenarios where the behavior of the entire population is influenced by
external and correlated signals. We proved that AMFCE solution exists under mild
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conditions and classic MFNE is a special case of AMFCE. We then developed a
novel theoretical framework based on IL (CMFIL) to recover the AMFCE policy from
demonstrations. To facilitate efficient computation, we adopted signatures from rough
path theory to represent mean-field evolution. Finally, we evaluated CMFIL on sev-
eral tasks, including one from the real world. Our experimental results showed that
CMFIL outperforms state-of-the-art imitation learning algorithms for MFGs in all the
experiments. These results highlight the potential of CMFIL to predict and explain
large population behavior under correlated signals.

Appendix A Proof

A.1 Proof of Bellman Equation

Proof.

Qπππt (s, a, µ, z;πππ
′) =r(s, a, µ)+

γEπππ′

[

T
∑

i=t+1

γi−t−1r(si, ai, µi)

∣

∣

∣

∣

∣

(st, at, µt, zt) = (s, a, µ, z)

]

=r(s, a, µ) + γEπππ′

[

r(st+1, at+1,Φ(µ, π
′
t, z))

+ γ

T
∑

i=t+2

γi−t−2r(si, ai, µi)
∣

∣

∣
(st, at, µt, zt) = (s, a, µ, z)

]

(A1)

where Eπππ′ [
∑T

i=k γ
i−kr(si, ai, µi)] is the expectation taken with respect

to zi ∼ ρi(·), ai ∼ πi(·|si, zi), si+1 ∼ P (·|si, ai, µi), µi(·) =
∑

a∈A

∑

s∈S µi−1(s)P (·|s, a, µi−1)π
′
i−1(a|s, zi−1), ∀i ∈ {t+ 1, t+ 2, · · · , T}.

Eπππ′

[

r
(

s′, a′,Φ(µ, π′
t, z)

)

+ γ

T
∑

i=t+2

γi−t−2r(si, ai, µi)
]

=E

[

r
(

s′, a′,Φ(µ, π′
t, z)

)

+ γEπππ′

[

T
∑

i=t+2

γi−t−2r(si, ai, µi)|(st+1, at+1, µt+1, zt+1) = (s′, a′,Φ(µ, π′
t, z), z

′)
]

]

=E

[

Qπππt+1

(

s′, a′,Φ(µ, π′
t, z), z

′;πππ′
)

]

(A2)

where the outer expectation is taken with respect to z′ ∼ ρt+1(·), s
′ ∼ P (·|s, a, µ), a′ ∼

π(·|s, z). The outer expectation is the conditional expectation given (st, at, µt, zt) =
(s, a, µ, z). We omit (st, at, µt, zt) = (s, a, µ, z) for brevity. Combine (A1) and (A2),
we get the Bellman equation.

Qπππt (s, a, µ, z;πππ
′) = r(s, a, µ)

20



+ γE

[

Qπππt+1

(

s′, a′,Φ(µ, π′
t, z), z

′;πππ′|(st, at, µt, zt) = (s, a, µ, z)
)

]

where expectation is taken with respect to z′ ∼ ρt+1(·), s
′ ∼ P (·|s, a, µ), a′ ∼ πt(·|s, z).

A.2 Proof of Theorem 1

Lemma 1. Policy πππ′ is the best response of πππ given ρρρ if and
only if

∑

z∈Z ρt(z)π
′
t(a|s, z) > 0 is a sufficient condition of a ∈

argmaxa′∈A E
z∼ρpred

t (·|It)
Q∗(s, a′, µ, z;πππ), ∀t ∈ T .

Proof. We denote

Qπππt (s, a, µ, It;πππ) = E
z∼ρpredt (·|It)

Qπππt (s, a, µ, z;πππ)

and Q∗
t (s, a, µ, It;πππ) = E

z∼ρpred
t (·|It)

Q∗
t (s, a, µ, z;πππ).

If πππ′ is the best response of πππ, but
∑

z∈Z ρt(z)π
′
t(a|s, z) > 0 is not sufficient

condition of a ∈ argmaxa′∈A Q∗
t (s, a, µ, It;πππ). Then there exists t ∈ T , such that

∑

z∈Z ρt(z)π
′
t(a|s, z) > 0, while a ̸∈ argmaxa′∈A Q∗

t (s, a
′, µ, It;πππ).

If πππ and ρρρ are fixed, the mean field is also fixed. Finding the best response of πππ is

equivalent to solving an MDP. Then the expected return is E
[

Qπππ
′

0 (s0, a0, µ0, I0;πππ)
]

,

where the expectation is taken with respect to z ∼ ρ0(·), s0 ∼ µ0, a0 ∼ π′
0(·|s0, z0). We

assume that there exists πππ∗ such that
∑

z∈Z ρt(z)π
∗
t (a|s, z) > 0 is sufficient condition

of a ∈ argmaxa′∈A Q∗
t (s, a, µ, It;πππ). The expected return of πππ∗ is higher than the

expected return of πππ′ as suboptimal action is impossible to be sampled in the MDP
under the population policy πππ, which conflicts with the assumption.

If there exists πππ′ such that for all a ∈ argmaxa′∈A Q∗
t (s, a, µ, It;πππ), we have

∑

z∈Z ρt(z)π
′
t(a|s, z) > 0 is true. Then ∀t ∈ T , E

[

Qπππ
′

0 (s0, a0, µ0, I0;πππ)
]

=

maxπ̃̃π̃π E
[

Qπ̃̃π̃π0 (s0, a0, µ0, I0;πππ)
]

, where the first expectation is taken with respect to
z ∼ ρ0(·), s0 ∼ µ0, a0 ∼ π′

0(·|s0, z0) and the second expectation is taken with respect
to z ∼ ρ0(·), s0 ∼ µ0, a0 ∼ π̃0(·|s0, z0). So the πππ′ is the best response of πππ.

Lemma 2. BR(π;ρρρ) has a closed graph.

Proof. We assume that limn→∞ πππn = πππ, limn→∞ πππ′
n = πππ′, πππn ∈ BR(πππ′

n;ρρρ), but
πππ ̸∈ BR(πππ′;ρρρ). Consequently, there exists a ∈ A that

∑

z∈Z ρt(z)πn,t(a|s, z) >
0, a ∈ argmaxa′ Q

∗
t (s, a

′, µ, It;πππ
′
n), while a ̸∈ argmaxa′ Q

∗
t (s, a

′, µ, It;πππ
′). Let a⋆ =

argmaxa′ Q
∗
t (s, a

′, µ, It;πππ
′). Let ϵ denote the margin of Q value

Q∗
t (s, a

⋆, µ, It;πππ
′)−Q∗

t (s, a, µ, It;πππ
′) = ϵ > 0

From the continuity of Q∗
t (s, a, µ, It;πππ

′) = Ez∼ρt(·)Q
∗
t (s, a, µ, z;πππ

′). It is obvious that
there exists N ∈ N such that |Q∗

t (s, a, µ, It;πππ
′)−Q∗

t (s, a, µ, It;πππ
′
n)| <

ϵ
2 , ∀n > N, a′ ∈

A.
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Then we can induce that

Q∗
t (s, a

⋆, µ, It;πππ
′
n)−Q∗

t (s, a, µ, It;πππ
′
n)

=Q∗
t (s, a

⋆, µ, It;πππ
′
n) +Q∗

t (s, a
⋆, µ, It;πππ

′)−Q∗
t (s, a

⋆, µ, It;πππ
′) +Q∗

t (s, a, µ, It;πππ
′)

−Q∗
t (s, a, µ, It;πππ

′)−Q∗
t (s, a, µ, It;πππ

′
n)

≥Q∗
t (s, a

⋆, µ, It;πππ
′)−Q∗

t (s, a, µ, It;πππ
′)− |Q∗

t (s, a
⋆, µ, It;πππ

′
n)−Q∗

t (s, a
⋆, µ, It;πππ

′)|

− |Q∗
t (s, a, µ, It;πππ

′
n)−Q∗

t (s, a, µ, It;πππ
′)|

>ϵ−
ϵ

2
−
ϵ

2
= 0

contradicting a ∈ argmaxa′ Q
∗
t (s, a

′, µ, It;πππ
′
n). So BR(πππ;ρρρ) has a closed graph.

Lemma 3. BR(πππ;ρρρ) is a convex set given πππ.

Proof. We assume that π1,π2 ∈ BR(π′;ρρρ). From Lemma 1,
∑

z∈Z ρt(z)πi,t(a | s, z) >
0, a ∈ argmaxa′∈A Q∗(s, a′, µ, It;πππ

′), ∀t ∈ T , ∀i ∈ {1, 2}. Then the convex combi-
nation π = λπ1 + (1 − λ)π2, λ ∈ [0, 1] also satisfies the requirements of Lemma 1.
Therefore π ∈ BR(π′;ρρρ). BR(π;ρρρ) is a convex set given πππ.

Theorem 1. If the functions r(s, a, µ) and P (s′|s, a, µ) are bounded and continuous
with respect to µ, there exists an AMFCE solution.

Proof. As πt ∈ ∆A, in which ∆A are simplices with finite dimensions, they are com-
pact. And BR(π;ρρρ) maps to a non-empty set, because the MDP induced by fixed µ

and ρρρ has an optimal policy. From Lemma 2 and 3, the requirements of Kakutani’s
fixed point theorem holds for BR(π;ρρρ). By Kakutani’s fixed point theorem, there
exists a fixed point π∗ ∈ BR(πππ∗;ρρρ). And ∀u ∈ U , ∀s ∈ A, ∀t ∈ T ,

∆t(st, µt, u;πππ
∗, ρρρ) =

∑

z∈Z

∑

a∈A

ρt(z)π
∗
t (a|s, z)

(

Qπππ
∗

t (st, u(a), µt, z;πππ
∗)

−Qπππ
∗

(st, a, µt, z;πππ
∗)
)

≤ 0,

where µt = Φ(µt−1, π
∗
t−1, zt). Then (πππ∗, ρρρ) is an AMFCE.

A.3 Proof of Corollary 1

Corollary 1. If (πππ,µµµ) is an MFNE, then it leads to an AMFCE solution (πππ,ρρρ) with
|Z| = 1 and ρt(z) = 1 for all t ∈ T where z ∈ Z is the single element in the signal
space.

Proof. Assume that (π,µ) is an MFNE, so the following condition holds [8]. πt(a |
s, z) > 0 is sufficient condition of a ∈ argmaxa′∈AQ

∗
t (s, a

′, µ, z;πππ). If z ∈ Z is the sin-
gle element in the signal space Z, ρt(z) = 1 is true for all t ∈ T .

∑

z ρt(z)πt(a | s, z) > 0
is sufficient condition of a ∈ argmaxa′∈A E

z∼ρpredt (·|It)
Q∗
t (s, a

′, µ, z;πππ). Besides, the

mean field µµµ satisfies that µt = Φ(µt−1, πt−1, z). So (πππ,ρρρ) is an AMFCE.
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A.4 Proof of Proposition 2

Proposition 2. (πππ,ρρρ) is an AMFCE solution if and only if R(a0:T ,πππ,ρρρ) ≤ 0, ∀a0:T ∈
AT .

Proof. (Sufficient Condition). If (πππ,ρρρ) is a solution of AMFCE, but the inequality
in Proposition 2 does not hold. There exists some t and trajectory such that

E

[

T
∑

t=0

γtr(st, at, µt)

]

> J(πππ,ρρρ)

From the definition of AMFCE,

∑

a∈A

∑

z∈Z

ρt(z)πt(a|s, z)
[

Qπππt (s, a, µt, z;πππ)−Qπππt (s, a
′, µt, z;πππ)

]

≥ 0

We have that

E

[

T
∑

t=0

γtr(st, at, µt)

]

=E

[

T−1
∑

t=0

γtr(at, st, µt) + γT r(sT , aT , µT )

]

≤E

[

T−1
∑

t=0

γtr(at, st, µt) + γTE [QπππT (sT , a, µT , z;πππ)]

]

The outer expectation is taken with respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, µt−1)
and the inner expectation is taken with respect to z ∼ ρT (·), a ∼ πT (·|sT , z). Similarly,
we can induce that

E

[

T
∑

t=0

γtr(st, at, µt)

]

=E

[

T−2
∑

t=0

γtr(at, st, µt) + γT−1r(sT−1, aT−1, µT−1) + γTE [QπππT (sT , a, µT , z;πππ)]

]

≤E

[

T−2
∑

t=0

γtr(at, st, µt) + γT−1
E[QπππT−1(sT−1, a, µT−1, z;πππ)]

]

≤E

[

Qπππ0 (s0, a, µ0, z;πππ)

]

= J(πππ,ρρρ)

where the last expectation is taken with respect to z ∼ ρ0, s0 ∼ µ0(·), a ∼ π0(·|s0, z).
It contradicts with the assumption.
(Necessary Condition). We assume that the inequality holds and (πππ,ρρρ) is

not an AMFCE. There exists a time step t ∈ T such that ∆t(s, µ, u;πππ,ρρρ) =
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E[Qπππt (s, u(a), µ, z) − Qπππt (s, a, µ, z)] > 0. Then agent can achieve a strictly higher
expected return if she chooses action u(a) when she is recommended action a at time
step t. It implies that there exists an action sequence such that R(a0:T ,πππ,ρρρ) > 0,
which conflicts with the assumption.

A.5 Proof of Theorem 3

Theorem 3. For policy πππ and correlation device ρρρ, let λ∗πππ(τk) =
∏T
t=0 ρt(zt)π

∗
t (at|st, zt) be the probability of generating the sequence τk if the individual

policy is πππ∗. Then we have

L(πππ,ρρρ, λ∗πππ, r) = E[

T
∑

t=0

γtr(st, at, µt)]− J(πππ,ρρρ)

where the expectation is taken with respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, µt−1),
at ∼ π∗

t (·|st, zt), µt = Φ(µt−1, πt−1, zt−1).

Proof. We note that

∑

τk∈DE

λ∗πππ(τi)Eπππ

[

T
∑

t=0

γtr(st, at, µt)

]

= Eπππ∗Eπππ

[

T
∑

t=0

γtr(st, at, µt)

]

= E[

T
∑

t=0

γtr(st, at, µt)]

The Eπππ is expectation taken with respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, µt−1), µt =
Φ(µt−1, πt−1, zt−1). The Eπππ∗ is taken with respect to at ∼ π∗

t (·|st, zt). The third expec-
tation is taken with respect to zt ∼ ρt(·), at ∼ π∗

t (·|st, zt), st ∼ P (·|st−1, at−1, µt−1),
µt = Φ(µt−1, πt−1, zt−1). Then we can derive the conclusion directly.

L(π, ρρρ, λ∗πππ, r) =E

[

T
∑

t=0

γjr(st, at, µt)
]

− J(πππ,ρρρ)

A.6 Proof of Proposition 4

Proposition 4. The policy πππ learned on the reward function recovered by AMFCE-
IRL can be characterized as follows:

MFRL ◦AMFCE-IRLψ(πππ
E , ρρρE):= argmin

πππ
max
r
J(πππE , ρρρE)
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− E

[ T
∑

t=0

γtr(st, at, µt)

]

− ψGA(r)

where the expectation is taken with respect to zt ∼ ρEt (·), st ∼ P (·|st−1, at−1, µt−1),
at ∼ πt(·|st, zt), µt = Φ(µt−1, π

E
t−1, zt−1).

The objective to recover AMFCE is defined as:

min
πππ

max
ω

Eπππ,ρρρE

[ T
∑

t=0

γt logDω(st, at, µt)

]

+ EπππE ,ρρρE

[ T
∑

t=0

γt log
(

1−Dω(st, at, µt)
)

]

(9)

where Dω is the discriminator network parameterized with ω, with input (st, at, µt) and
output a real number in (0, 1]. The first expectation is taken with respect to zt ∼ ρEt (·),
st ∼ P (·|st−1, at−1, µt−1), at ∼ πt(·|st, zt), µt = Φ(µt−1, π

E
t−1, zt−1). The second expec-

tation is taken with respect to zt ∼ ρEt (·), st ∼ P (·|st−1, at−1, µt−1), at ∼ πEt (·|st, zt),
µt = Φ(µt−1, π

E
t−1, zt−1).

Proof. We denote r̃ = AMFCE-IRL(πE). The saddle point of L(πππ,ρρρ, λ, r) is λ
E
πππ (τk) =

∏T
t=0 π

E
t (at|st, zt) and r̃, where (πππE , ρρρE) ∈ AMFCE. So given expert demonstrations

sampled from (πππE , ρρρE) ∈ AMFCE , we can recover πππE by (A3).

πππ = argmin
πππ

J(πππE , ρρρE)− E[

T
∑

t=0

γtr̃(st, at, µt)]

= argmin
πππ

max
r
J(πππE , ρρρE)− E[

T
∑

t=0

γtr(st, at, µt)]− ψGA(r) (A3)

If we select ψGA as the regularizer, and make the change of variables r(s, a, µ) =
− log(d(s, a, µ)), we get

max
r
J(πππE , ρρρE)− E[

T
∑

t=0

γtr(st, at, µt)]− ψGA(r)

=−max
d

EπππE ,ρρρE [

T
∑

t=0

γt log(d(st, at, µt))] + Eπππ,ρρρE [

T
∑

t=0

γt log(d(st, at, µt))]

−max
d

EπππE ,ρρρE [

T
∑

t=0

g(r(st, at, µt))]

=max
ω

Eπππ,ρρρE
[

T
∑

t=0

γt logDω(st, at, µt)
]

+ EπππE ,ρρρE

[ T
∑

t=0

γt log
(

1−Dω(st, at, µt)
)

]

where the expectation EπππE ,ρρρE is taken with respect to st ∼ P (·|st−1, at−1, µt−1),
at ∼ πEt (·|st, zt), zt ∼ ρEt (·), µt = Φ(µt−1, π

E
t−1, zt−1) and the expectation Eπππ,ρρρE is
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taken with respect to st ∼ P (·|st−1, at−1, µt−1), at ∼ πt(·|st, zt), zt ∼ ρEt (·), µt =
Φ(µt−1, π

E
t−1, zt−1).

A.7 Proof of Proposition 5

Proposition 5. If ρρρϕ is parameterized with ϕ, the gradient to optimize ϕ given state
s is

E
z∼ρφt (·)

[

∇ϕ log ρ
ϕ
t (z)Ea∼πt(·|s,z)Q

πππ
t (s, a, µ, z;πππ)

]

. (10)

Proof. The gradient of parameterized ρϕ is

∇ϕ

∑

z∈Z

ρϕt (z)
∑

a∈A

πt(a|s, z)Q
πππ
t (s, a, µ, z;πππ)

=
∑

z∈Z

∇ϕρ
ϕ
t (z)

∑

a∈A

πt(a|s, z)Q
πππ
t (s, a, µ, z;πππ)

=E
z∼ρφt (·)

[

∑

a∈A

πt(a|s, z)Q
πππ
t (s, a, µ, z;πππ)∇ϕ log ρ

ϕ
t (z)

]

=E
z∼ρφt (·)

[

∇ϕ log ρ
ϕ
t (z)Ea∼πt(·|s,z)Q

πππ
t (s, a, µ, z;πππ)

]

Appendix B Experiment detail

The experiments were run on the server with AMD EPYC 7742 64-Core Processor
and NVIDIA A100 40GB.

Due to the instability natureof generative adversarial networks (GANs) [1, 17],
the convergence of Algorithm 1 may not be not guaranteed. To address this issue,
we integrated the gradient penalty into the objective function of CMFIL to stabilize
the training of policy π. It has been proven that GAN training with zero-centered
will enhance the training stability [17]. To provide a fair comparison, we used Actor-
Critic (AC) algorithm for both CMFIL, MFAIRL, and MFIRL. The input of AC is an
extended state, a concatenation of state, action, time step, and signature. The input
of the discriminator is the extended state and the action. We did not use signature
in the Ocean Ranch and RPS because signature requires the length of sequential
data is larger than 1. For games with the sequential setting, the depth of truncated
signature is 3. For actor and critic networks of AC, we adopt two-layer perceptrons
with the Adam optimizer and the ReLU activation function. For the network of the
discriminator, we adopt three-layer perceptrons with Adam optimizer. The activation
functions between layers are Leaky ReLU, while the activation function of output
is the sigmoid activation function. The setting of main hyperparameters is shown in
Table B1.
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Table B1: The hyperparameters in the
experiment

hyperparameters value
hidden size of actor network 256
hidden size of critic network 256
hidden size of discriminator network 128

Equilirbrium MFCE AMFCE
Distribution π(B|s′, z = 0) ρ(z = 0) π(B|s′, z = 0) π(B|s′, z = 1) ρ(z = 0) ρ(z = 1)

Value 1 1 1/2 1 1/2 1/2

Table C2: The only MFCE and a possible AMFCE in the absent-minded driver game.

Appendix C Comparison with MFCE Derived by
Muller et al.

In this section, We use the absent-minded driver game [23] to show the difference
between AMFCE and the MFCE framework proposed by Muller et al. [20]. Their
notion of MFCE assumes that the mediator selects a mixed policy for the population
and then sample a deterministic policy from the mixed policy and recommends to every
agent, while our AMFCE framework assumes that the mediator selects a behavioral
policy for the population at every time step and samples an action for every agent
as recommendation. If agents are of bounded rationality, the mixed policy is not
equivalent to the behavioral policy.
Example 2. Suppose that the absent-minded driver game has two time steps. At the
initial time, all the agents stay in state s1. The agent will stay in the state s1 if action
B is chosen and the current mean field µ(s1) = 1. If action E is chosen, the agent
will move to state s2. If the agent enter the state s2, the agent will stay in s2 until the
ending of the game. The reward function is

r(s, a, µ) =







3(1− µ(s1)), a = E, s = s1
1
2 , a = B, s = s1, µ = ·
0, otherwise

.

Consider the case where the agents cannot remember the time step and the history.
and the agent does not choose to take the deterministic policy of action E at s′ because
the policy makes the final payoff 0. So the only MFCE policy in the game is the
deterministic policy to take action B in any state, which has a final payoff of 1.

On the other hand, we can find a possible AMFCE shown in the Table C2. The
agents will choose action E if it is recommended.

Example 2 suggests that AMFCE has larger policy space than the MFCE proposed
by Muller et al. [20] because AMFCE assumes that the correlated signal sampled by
the mediator corresponds to a behavioral policy.
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