1 Harris, J. J. & Attwell, D. The Energetics of CNS White Matter. Journal of Neuroscience 32, 356-371, doi:10.1523/jneurosci.3430-11.2012 (2012).
2 Salami, M., Itami, C., Tsumoto, T. & Kimura, F. Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proceedings of the National Academy of Sciences 100, 6174-6179, doi:10.1073/pnas.0937380100 (2003).
3 Carreiras, M. et al. An anatomical signature for literacy. Nature 461, 983-986, doi:10.1038/nature08461 (2009).
4 Fields, R. D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nature Reviews Neuroscience 16, 756-767, doi:10.1038/nrn4023 (2015).
5 Drakesmith, M. et al. Mediation of Developmental Risk Factors for Psychosis by White Matter Microstructure in Young Adults With Psychotic Experiences. JAMA Psychiatry 73, 396-406, doi:10.1001/jamapsychiatry.2015.3375 (2016).
6 Dries, D. R. et al. Loss of Nicastrin from Oligodendrocytes Results in Hypomyelination and Schizophrenia with Compulsive Behavior. The Journal of biological chemistry 291, 11647-11656, doi:10.1074/jbc.M116.715078 (2016).
7 Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. The Lancet 388, 86-97, doi:10.1016/s0140-6736(15)01121-6 (2016).
8 Bendlin, B. B. et al. White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three. Developmental neuropsychology 35, 257-277, doi:10.1080/87565641003696775 (2010).
9 Prins, N. D. & Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 11, 157-165, doi:10.1038/nrneurol.2015.10 (2015).
10 Langdon, D. W. Cognition in multiple sclerosis. Curr Opin Neurol 24, 244-249, doi:10.1097/WCO.0b013e328346a43b (2011).
11 Sacchet, M. D. & Gotlib, I. H. Myelination of the brain in Major Depressive Disorder: An in vivo quantitative magnetic resonance imaging study. Scientific Reports 7, doi:10.1038/s41598-017-02062-y (2017).
12 Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience 8, 1148-1150, doi:10.1038/nn1516 (2005).
13 Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature neuroscience 12, 1370-1371, doi:10.1038/nn.2412 (2009).
14 Forbes, T. A. & Gallo, V. All Wrapped Up: Environmental Effects on Myelination. Trends Neurosci 40, 572-587, doi:10.1016/j.tins.2017.06.009 (2017).
15 Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766-774, doi:10.1016/j.cell.2014.10.011 (2014).
16 McTigue, D. M. & Tripathi, R. B. The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of neurochemistry 107, 1-19, doi:10.1111/j.1471-4159.2008.05570.x (2008).
17 Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev Cell 25, 599-609, doi:10.1016/j.devcel.2013.05.013 (2013).
18 Aggarwal, S. et al. A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev Cell 21, 445-456, doi:10.1016/j.devcel.2011.08.001 (2011).
19 Baron, W. & Hoekstra, D. On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett 584, 1760-1770, doi:10.1016/j.febslet.2009.10.085 (2010).
20 García-Mateo, N. et al. Myelin extracellular leaflet compaction requires apolipoprotein D membrane management to optimize lysosomal-dependent recycling and glycocalyx removal. Glia 66, 670-687, doi:10.1002/glia.23274 (2018).
21 Bergholt, M. S. et al. Correlated Heterospectral Lipidomics for Biomolecular Profiling of Remyelination in Multiple Sclerosis. ACS Cent Sci 4, 39-51, doi:10.1021/acscentsci.7b00367 (2018).
22 Fledrich, R. et al. Targeting myelin lipid metabolism as a potential therapeutic strategy in a model of CMT1A neuropathy. Nat Commun 9, 3025, doi:10.1038/s41467-018-05420-0 (2018).
23 Bosio, A., Binczek, E. & Stoffel, W. Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci U S A 93, 13280-13285, doi:10.1073/pnas.93.23.13280 (1996).
24 Coetzee, T. et al. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86, 209-219, doi:10.1016/s0092-8674(00)80093-8 (1996).
25 Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9, 46-56, doi:10.1038/nrn2297 (2008).
26 Surana, P. et al. Neurological complications of pandemic influenza A H1N1 2009 infection: European case series and review. European journal of pediatrics 170, 1007-1015, doi:10.1007/s00431-010-1392-3 (2011).
27 Rogers, J. P. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7, 611-627, doi:10.1016/s2215-0366(20)30203-0 (2020).
28 Kępińska, A. P. et al. Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Front Psychiatry 11, 72, doi:10.3389/fpsyt.2020.00072 (2020).
29 Hoogland, I. C., Houbolt, C., van Westerloo, D. J., van Gool, W. A. & van de Beek, D. Systemic inflammation and microglial activation: systematic review of animal experiments. Journal of neuroinflammation 12, 114, doi:10.1186/s12974-015-0332-6 (2015).
30 Sadasivan, S., Zanin, M., O'Brien, K., Schultz-Cherry, S. & Smeyne, R. J. Induction of microglia activation after infection with the non-neurotropic A/CA/04/2009 H1N1 influenza virus. PloS one 10, e0124047, doi:10.1371/journal.pone.0124047 (2015).
31 Ji, P., Schachtschneider, K. M., Schook, L. B., Walker, F. R. & Johnson, R. W. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets. Brain, behavior, and immunity 54, 243-251, doi:10.1016/j.bbi.2016.02.010 (2016).
32 Jurgens, H. A., Amancherla, K. & Johnson, R. W. Influenza Infection Induces Neuroinflammation, Alters Hippocampal Neuron Morphology, and Impairs Cognition in Adult Mice. The Journal of Neuroscience 32, 3958, doi:10.1523/JNEUROSCI.6389-11.2012 (2012).
33 Peferoen, L., Kipp, M., van der Valk, P., van Noort, J. M. & Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141, 302-313, doi:10.1038/nn.326310.1111/imm.12163 (2014).
34 Blackmore, S. et al. Influenza infection triggers disease in a genetic model of experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences 114, E6107-E6116, doi:10.1073/pnas.1620415114 (2017).
35 Poitelon, Y., Kopec, A. M. & Belin, S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 9, doi:10.3390/cells9040812 (2020).
36 Lüders, K. A. et al. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 67, 634-649, doi:10.1002/glia.23549 (2019).
37 Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18, 59-70, doi:10.1016/s0896-6273(01)80046-5 (1997).
38 Skripuletz, T. et al. Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. The American journal of pathology 172, 1053-1061, doi:ajpath.2008.070850 [pii]10.2353/ajpath.2008.070850 [doi] (2008).
39 Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487, doi:10.1038/nature21029 (2017).
40 Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34, 11929-11947, doi:10.1523/jneurosci.1860-14.2014 (2014).
41 Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176, doi:10.1038/nature05453 (2007).
42 Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367-372, doi:10.1038/s41586-018-0590-4 (2018).
43 Crespo, O. et al. Tyrosine kinase inhibitors ameliorate autoimmune encephalomyelitis in a mouse model of multiple sclerosis. J Clin Immunol 31, 1010-1020, doi:10.1007/s10875-011-9579-6 (2011).
44 Martínez-Muriana, A. et al. CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves. Scientific Reports 6, 25663, doi:10.1038/srep25663 (2016).
45 Olmos-Alonso, A. et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain : a journal of neurology 139, 891-907, doi:10.1093/brain/awv379 (2016).
46 Gerber, Y. N. et al. CSF1R Inhibition Reduces Microglia Proliferation, Promotes Tissue Preservation and Improves Motor Recovery After Spinal Cord Injury. Frontiers in cellular neuroscience 12, 368, doi:10.3389/fncel.2018.00368 (2018).
47 Yan, X., Maixner, D. W., Li, F. & Weng, H. R. Chronic pain and impaired glial glutamate transporter function in lupus-prone mice are ameliorated by blocking macrophage colony-stimulating factor-1 receptors. J Neurochem 140, 963-976, doi:10.1111/jnc.13952 (2017).
48 Chalmers, S. A. et al. CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clinical immunology (Orlando, Fla.) 185, 100-108, doi:10.1016/j.clim.2016.08.019 (2017).
49 Young, K. M. et al. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77, 873-885, doi:10.1016/j.neuron.2013.01.006 (2013).
50 Snaidero, N. et al. Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156, 277-290, doi:10.1016/j.cell.2013.11.044 (2014).
51 Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 15, 1621-1623, doi:10.1038/nn.3263 (2012).
52 Lehmann, M. L., Weigel, T. K., Elkahloun, A. G. & Herkenham, M. Chronic social defeat reduces myelination in the mouse medial prefrontal cortex. Scientific Reports 7, 46548, doi:10.1038/srep46548 (2017).
53 Bonnefil, V. et al. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. Elife 8, doi:10.7554/eLife.40855 (2019).
54 Plieger, T., Melchers, M., Montag, C., Meermann, R. & Reuter, M. Life stress as potential risk factor for depression and burnout. Burnout Research 2, 19-24, doi:https://doi.org/10.1016/j.burn.2015.03.001 (2015).
55 Cathomas, F. et al. Oligodendrocyte gene expression is reduced by and influences effects of chronic social stress in mice. Genes Brain Behav 18, e12475, doi:10.1111/gbb.12475 (2019).
56 Aston, C., Jiang, L. & Sokolov, B. P. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 10, 309-322, doi:10.1038/sj.mp.4001565 (2005).
57 Dhar, A. K. & Barton, D. A. Depression and the Link with Cardiovascular Disease. Front Psychiatry 7, 33, doi:10.3389/fpsyt.2016.00033 (2016).
58 Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16, 22-34, doi:10.1038/nri.2015.5 (2016).
59 Dantzer, R. & Kelley, K. W. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21, 153-160, doi:10.1016/j.bbi.2006.09.006 (2007).
60 Udina, M. et al. Interferon-induced depression in chronic hepatitis C: a systematic review and meta-analysis. J Clin Psychiatry 73, 1128-1138, doi:10.4088/JCP.12r07694 (2012).
61 Blank, T. et al. Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment. Immunity 44, 901-912, doi:10.1016/j.immuni.2016.04.005 (2016).
62 Buscham, T. J., Eichel, M. A., Siems, S. B. & Werner, H. B. Turning to myelin turnover. Neural Regen Res 14, 2063-2066, doi:10.4103/1673-5374.262569 (2019).
63 Saadat, L. et al. Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice. Glia 58, 391-398, doi:10.1002/glia.20930 (2010).
64 Schwarz, E. et al. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res 7, 4266-4277, doi:10.1021/pr800188y [doi] (2008).
65 Wood, P. L., Tippireddy, S., Feriante, J. & Woltjer, R. L. Augmented frontal cortex diacylglycerol levels in Parkinson's disease and Lewy Body Disease. PLoS One 13, e0191815, doi:10.1371/journal.pone.0191815 (2018).
66 Yu, Q. et al. Lipidome alterations in human prefrontal cortex during development, aging, and cognitive disorders. Mol Psychiatry 25, 2952-2969, doi:10.1038/s41380-018-0200-8 (2020).
67 Lydic, T. A. & Goo, Y. H. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin Transl Med 7, 4, doi:10.1186/s40169-018-0182-9 (2018).
68 Gopalakrishnan, G. et al. Lipidome and proteome map of myelin membranes. J Neurosci Res 91, 321-334, doi:10.1002/jnr.23157 (2013).
69 Ziemka-Nalecz, M. et al. Impact of neonatal hypoxia-ischaemia on oligodendrocyte survival, maturation and myelinating potential. J Cell Mol Med 22, 207-222, doi:10.1111/jcmm.13309 (2018).
70 Yang, L. Q., Chen, M., Zhang, J. L., Ren, D. L. & Hu, B. Hypoxia Delays Oligodendrocyte Progenitor Cell Migration and Myelin Formation by Suppressing Bmp2b Signaling in Larval Zebrafish. Front Cell Neurosci 12, 348, doi:10.3389/fncel.2018.00348 (2018).
71 Doan, V. et al. Abbreviated exposure to cuprizone is sufficient to induce demyelination and oligodendrocyte loss. J Neurosci Res 91, 363-373, doi:10.1002/jnr.23174 (2013).
72 Epp, J. R. et al. Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs. eNeuro 2, doi:10.1523/eneuro.0022-15.2015 (2015).
73 Larocca, J. N. & Norton, W. T. Isolation of myelin. Curr Protoc Cell Biol Chapter 3, Unit3.25, doi:10.1002/0471143030.cb0325s33 (2007).
74 BLIGH, E. G. & DYER, W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917, doi:10.1139/o59-099 (1959).
75 Roy, J., Dibaeinia, P., Fan, T. M., Sinha, S. & Das, A. Global analysis of osteosarcoma lipidomes reveal altered lipid profiles in metastatic versus nonmetastatic cells. Journal of lipid research 60, 375-387, doi:10.1194/jlr.M088559 (2019).