[1] G.F. Van Hare, M.J. Ackerman, J.-A.K. Evangelista, R.J. Kovacs, R.J. Myerburg, K.M. Shafer, C.A. Warnes, R.L. Washington, and A.C. of C. American Heart Association Electrocardiography and Arrhythmias Committee of Council on Clinical Cardiology, Council on Cardiovascular Disease in Young, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 4: Congenital Heart Disease: A Scientific Statement From the American Heart Association and American College of Cardiology., Circulation. 132 (2015) e281-91. https://doi.org/10.1161/CIR.0000000000000240.
[2] J.A. Brothers, M.A. Frommelt, R.D.B. Jaquiss, R.J. Myerburg, C.D. Fraser, J.S. Tweddell, Expert consensus guidelines: Anomalous aortic origin of a coronary artery., J. Thorac. Cardiovasc. Surg. 153 (2017) 1440–1457. https://doi.org/10.1016/j.jtcvs.2016.06.066.
[3] M.J. Lipinski, C.M. McVey, J.S. Berger, C.M. Kramer, M. Salerno, Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis., J. Am. Coll. Cardiol. 62 (2013) 826–38. https://doi.org/10.1016/j.jacc.2013.03.080.
[4] E. Nagel, J.P. Greenwood, G.P. McCann, N. Bettencourt, A.M. Shah, S.T. Hussain, D. Perera, S. Plein, C. Bucciarelli-Ducci, M. Paul, M.A. Westwood, M. Marber, W.-S. Richter, V.O. Puntmann, C. Schwenke, J. Schulz-Menger, R. Das, J. Wong, D.J. Hausenloy, H. Steen, C. Berry, MR-INFORM Investigators, Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease., N. Engl. J. Med. 380 (2019) 2418–2428. https://doi.org/10.1056/NEJMoa1716734.
[5] S. Strigl, R. Beroukhim, A.M. Valente, D. Annese, J.S. Harrington, T. Geva, A.J. Powell, Feasibility of dobutamine stress cardiovascular magnetic resonance imaging in children, J. Magn. Reson. Imaging. 29 (2009) 313–319. https://doi.org/10.1002/jmri.21639.
[6] C. Charoenpanichkit, W.G. Hundley, The 20 year evolution of dobutamine stress cardiovascular magnetic resonance., J. Cardiovasc. Magn. Reson. 12 (2010) 59. https://doi.org/10.1186/1532-429X-12-59.
[7] H. Leong-Poi, S.-J. Rim, D.E. Le, N.G. Fisher, K. Wei, S. Kaul, Perfusion versus function: the ischemic cascade in demand ischemia: implications of single-vessel versus multivessel stenosis., Circulation. 105 (2002) 987–92. https://doi.org/10.1161/hc0802.104326.
[8] D.D. Lubbers, C.H.C. Janssen, D. Kuijpers, P.R.M. van Dijkman, J. Overbosch, T.P. Willems, M. Oudkerk, The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia., Int. J. Cardiovasc. Imaging. 24 (2008) 69–76. https://doi.org/10.1007/s10554-006-9205-5.
[9] R. Gebker, M. Frick, C. Jahnke, A. Berger, C. Schneeweis, R. Manka, S. Kelle, C. Klein, B. Schnackenburg, E. Fleck, I. Paetsch, Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease., Int. J. Cardiovasc. Imaging. 28 (2012) 89–97. https://doi.org/10.1007/s10554-010-9764-3.
[10] C. Basso, B.J. Maron, D. Corrado, G. Thiene, Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes, J. Am. Coll. Cardiol. 35 (2000) 1493–1501. https://doi.org/10.1016/S0735-1097(00)00566-0.
[11] J. Brothers, C. Carter, M. McBride, T. Spray, S. Paridon, Anomalous left coronary artery origin from the opposite sinus of Valsalva: Evidence of intermittent ischemia, J. Thorac. Cardiovasc. Surg. 140 (2010) e27–e29. https://doi.org/10.1016/j.jtcvs.2009.06.029.
[12] M.D. Cerqueira, N.J. Weissman, V. Dilsizian, A.K. Jacobs, S. Kaul, W.K. Laskey, D.J. Pennell, J.A. Rumberger, T. Ryan, M.S. Verani, American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging, Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association., Circulation. 105 (2002) 539–42. https://doi.org/10.1161/hc0402.102975.
[13] F.L. Gobel, L.A. Norstrom, R.R. Nelson, C.R. Jorgensen, Y. Wang, The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris., Circulation. 57 (1978) 549–56. https://doi.org/10.1161/01.cir.57.3.549.
[14] M.L. Shehata, T.A. Basha, M.R. Hayeri, D. Hartung, O.M. Teytelboym, J. Vogel-Claussen, MR myocardial perfusion imaging: Insights on techniques, analysis, interpretation, and findings, Radiographics. 34 (2014) 1636–1658. https://doi.org/10.1148/rg.346140074.
[15] T.T. Doan, A.M. Qureshi, S. Sachdeva, C. V Noel, D. Reaves-O’Neal, S. Molossi, Beta-Blockade in Intraseptal Anomalous Coronary Artery With Reversible Myocardial Ischemia, World J. Pediatr. Congenit. Hear. Surg. 12 (2021) 145–148. https://doi.org/10.1177/2150135120954818.
[16] T.T. Doan, S. Molossi, A.M. Qureshi, E.D. McKenzie, Intraseptal Anomalous Coronary Artery With Myocardial Infarction: Novel Surgical Approach., Ann. Thorac. Surg. 110 (2020) e271–e274. https://doi.org/10.1016/j.athoracsur.2020.02.076.
[17] T.T. Doan, R. Zea-Vera, H. Agrawal, C.M. Mery, P. Masand, D.L. Reaves-O’Neal, C. V. Noel, A.M. Qureshi, S.K. Sexson-Tejtel, C.D. Fraser, S. Molossi, Myocardial Ischemia in Children With Anomalous Aortic Origin of a Coronary Artery With Intraseptal Course., Circ. Cardiovasc. Interv. 13 (2020) e008375. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008375.
[18] S. Molossi, H. Agrawal, C.M. Mery, R. Krishnamurthy, P. Masand, S.K. Sexson Tejtel, C. V Noel, A.M. Qureshi, S.P. Jadhav, E.D. McKenzie, C.D. Fraser, Outcomes in Anomalous Aortic Origin of a Coronary Artery Following a Prospective Standardized Approach., Circ. Cardiovasc. Interv. 13 (2020) e008445. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008445.
[19] C.M. Mery, L.E. De León, S. Molossi, S.K. Sexson-Tejtel, H. Agrawal, R. Krishnamurthy, P. Masand, A.M. Qureshi, E.D. McKenzie, C.D. Fraser, Outcomes of surgical intervention for anomalous aortic origin of a coronary artery: A large contemporary prospective cohort study, J. Thorac. Cardiovasc. Surg. 155 (2018) 305-319.e4. https://doi.org/10.1016/j.jtcvs.2017.08.116.
[20] S. Molossi, T. Doan, Left coronary artery atresia in the young: long-term follow-up without exercise restriction., Cardiol. Young. (2019) 1–3. https://doi.org/10.1017/S1047951119002476.
[21] F. Saremi, J.D. Grizzard, R.J. Kim, Optimizing Cardiac MR Imaging: Practical Remedies for Artifacts, RadioGraphics. 28 (2008) 1161–1187. https://doi.org/10.1148/rg.284065718.
[22] K.N. Asrress, A. Schuster, N.F. Ali, R. Williams, S. Kutty, T. Lockie, M. Yousuff, K. De Silva, D.A. Danford, P. Beerbaum, M. Marber, S. Plein, E. Nagel, S. Redwood, Myocardial haemodynamic responses to dobutamine stress compared to physiological exercise during cardiac magnetic resonance imaging, J. Cardiovasc. Magn. Reson. 15 (2013) P16. https://doi.org/10.1186/1532-429x-15-s1-p16.
[23] S.F. Vatner, R.J. McRitchie, E. Braunwald, Effects of dobutamine on left ventricular performance, coronary dynamics, and distribution of cardiac output in conscious dogs., J. Clin. Invest. 53 (1974) 1265–73. https://doi.org/10.1172/JCI107673.
[24] J. Bartunek, W. Wijns, G.R. Heyndrickx, B. de Bruyne, Effects of dobutamine on coronary stenosis physiology and morphology: comparison with intracoronary adenosine., Circulation. 100 (1999) 243–9. https://doi.org/10.1161/01.cir.100.3.243.
[25] C. Noel, Cardiac stress MRI evaluation of anomalous aortic origin of a coronary artery., Congenit. Heart Dis. 12 (2017) 627–629. https://doi.org/10.1111/chd.12501.
[26] A. Wahl, I. Paetsch, A. Gollesch, S. Roethemeyer, D. Foell, R. Gebker, H. Langreck, C. Klein, E. Fleck, E. Nagel, Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases., Eur. Heart J. 25 (2004) 1230–6. https://doi.org/10.1016/j.ehj.2003.11.018.
[27] G. Korosoglou, Y. Elhmidi, H. Steen, D. Schellberg, N. Riedle, J. Ahrens, S. Lehrke, C. Merten, D. Lossnitzer, J. Radeleff, C. Zugck, E. Giannitsis, H.A. Katus, Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1,493 consecutive patients: assessment of myocardial wall motion and perfusion., J. Am. Coll. Cardiol. 56 (2010) 1225–34. https://doi.org/10.1016/j.jacc.2010.06.020.
[28] S. Kelle, S. Giusca, E. Nagel, S. Buss, V. Puntmann, E. Wellnhofer, E. Fleck, H. Katus, G. Korosoglou, Prognostic Value of Ischemic Burden of Dobutamine Stress Cardiac Magnetic Resonance Imaging, J. Am. Coll. Cardiol. 63 (2014) A1005. https://doi.org/10.1016/s0735-1097(14)61005-6.
[29] H. Agrawal, J.C. Wilkinson, C. V Noel, A.M. Qureshi, P.M. Masand, C.M. Mery, S.K. Sexson-Tejtel, S. Molossi, Impaired Myocardial Perfusion on Stress CMR Correlates With Invasive FFR in Children With Coronary Anomalies., J. Invasive Cardiol. 33 (2021) E45–E51. http://www.ncbi.nlm.nih.gov/pubmed/33385986.