Alatalo JM, Jägerbrand AK, Molau U (2015) Testing reliability of short-term responses to predict longer-term responses of Bryophytes and lichens to environmental change. Ecol. Indic. 58: 77-85. https://doi.org/10.1016/j.ecolind.2015.05.050
Bartels S, Caners RT, Ogilvie J et al (2018) Relating Bryophytes Assemblages to a Remotely-Sensed Depth-to-Water in Boreal Forests. Front. Plant Sci. 9: 858. https://doi.org/10.3389/fpls.2018.00858
Becker Scarpitta A, Bardat J, Lalanne A et al (2017) Long-term community change: Bryophytes are more responsive than vascular plants to nitrogen deposition and warming. J. Veg. Sci, 28(6): 1220-1229. https://doi.org/10.1111/jvs.12579
Beckmann M, Václavík T, Manceur AM et al (2014) glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5(4): 372-383. https://doi.org/10.1111/2041- 210X.12168
Bibi S, Wang L, Li XP et al (2018) Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int. J. Climatol. 38: e1-e17. https://doi.org/10.1002/joc.5411
Boch S, Allan E, Humbert JY et al (2018) Direct and indirect effects of land use on Bryophytes in grasslands. Sci. Total Environ. 644: 60-67. https://doi.org/10.1016/j.scitotenv.2018.06.323
Cao T, Zhu R, Guo SL, et al (2006) A brief report of the first red list of endangered Bryophytes in China. Bull. Botan. Res. 26: 756-762. (in Chinese) http://bbr.nefu.edu.cn/EN/Y2006/V26/I6/ 756
Chen Y, Niu S, Li PK et al (2017) Stand structure and substrate diversity as two major drivers for Bryophytes distribution in a temperate montane ecosystem. Front. Plant Sci. 8: 874. https://doi.org/10.3389/fpls.2017.00874
Désamoré A, Laenen B, Stech M et al (2012) How do temperate Bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future. Global Change Biol. 18(9): 2915-2924. https://doi.org/10.1111/j.1365-2486.2012.02752.x
Dilks TJK, Proctor MCF (1975) Comparative experiments on temperature responses of Bryophytes: assimilation, respiration and freezing damage. J. Bryol. 8(3): 317-336. https://doi.org/10.1179/jbr.1975.8.3.317
Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151. https://doi.org/10.1111/j.2006. 0906-7590.04596.x
Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40: 677-697. https://doi.org/10.1146/ annurev.ecolsys.110308.120159
Fergus AJ, Gerighausen U, Roscher C (2017) Vascular plant diversity structures Bryophytes colonization in experimental grassland. J. Veg. Sci. 28(5): 903-914. https://doi.org/10.1111 /jvs.12563
Gao J, Zhang X, Zhang P et al (2016) Geographical distribution pattern of endemic Bryophytes in china. Chin. J. Ecol. 35: 1691-1696. (in Chinese) http://www.cje.net.cn/CN/Y2016/V35/I7/ 1691
Graham CH, Elith J, Hijmans RJ et al (2008) The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 45(1): 239-247. https://doi.org/10.1111/j.1365-2664.2007.01408.x
Guo C, Ma YZ, Meng HW et al (2018) Changes in vegetation and environment in Yamzhog Yumco Lake on the southern Tibetan Plateau over past 2000 years. Palaeogeogr. Palaeocl. 501: 30-44. https://doi.org/10.1016/j.palaeo.2018.04.005
Guo Y, Li X, Zhao ZF et al (2019) Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus Umbellatus in China. Sci. Total Environ. 648: 1-11. https://doi.org/10.1016/j.scitotenv.2018.07.465
He X, He KS, Hyvönen J (2016) Will Bryophytes survive in a warming world? Perspect. Plant Ecol. 19: 49-60. https://doi.org/10.1016/j.ppees.2016.02.005
Higgins KL, Garon-Labrecque MÈ (2018) Fine-scale influences on thaw depth in a forested peat plateau landscape in the Northwest Territories, Canada: Vegetation trumps microtopography. Permafrost Periglac. 29(1): 60-70. https://doi.org/10.1002/ppp.1961
Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15): 1965-1978. https://doi.org/10.1002/joc.1276
Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105-108. https://doi.org/10.1038/nature11118
Ingerpuu N, Kupper T, Vellak K et al (2019) Response of Bryophytes to afforestation, increase of air humidity, and enrichment of soil diaspore bank. Forest Ecol. Manag. 432: 64-72. https://doi.org/10.1016/j.foreco.2018.09.004
Perera-Castro AV, Waterman MJ, Turnbull JD et al (2020) It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Front. Plant Sci. 11: 1178. https://doi.org/10.3389/fpls.2020.01178
Pörtner HO, Roberts DC, Masson-Delmotte et al (2019) IPCC special report on the ocean and cryosphere in a changing climate. IPCC Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press.
Jägerbrand AK, Kudo G, Alatalo JM et al (2012) Effects of neighboring vascular plants on the abundance of Bryophytes in different vegetation types. Polar Sci. 6(2): 200-208. https://doi.org/10.1016/j.polar.2012.02.002
Jiang TT, Yang XC, Zhong YL et al (2018) Species composition and diversity of ground Bryophytes across a forest edge-to-interior gradient. Sci. Rep. 8(1): 11868. https://doi.org/10.1038/s41598-018-30400-1
Kang S, Zhang Q, Qian Y et al (2019) Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Nati. Sci. Rev. 6(4): 796-809. https://doi.org/10.1093/nsr/nwz031
Kallio P, Valanne N (1975) On the effect of continuous light on photosynthesis in mosses. In Fennoscandian tundra ecosystems. Springer, Berlin, pp 149-162.
Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389(6646): 33-39. https://doi.org/10.1038/37918
Kershaw KA, Webber MR (1986) Seasonal changes in the chlorophyll content and quantum efficiency of the moss Brachythecium Rutabulum. Trans. Brit. Bryol. Soc. 14(1): 151-158. https://doi.org/10.1179/jbr.1986.14.1.151
Kiebacher T, Keller C, Scheidegger C et al (2016) Hidden crown jewels: the role of tree crowns for Bryophytes and lichen species richness in sycamore maple wooded pastures. Biodivers. Conserv. 25(9): 1605-1624. https://doi.org/10.1007/s10531-016-1144-4
Lang SI, Cornelissen JH, Hölzer A et al (2009) Determinants of cryptogam composition and diversity in Sphagnum-dominated peatlands: the importance of temporal, spatial and functional scales. J. Ecol. 97(2): 299-310. https://doi.org/10.1111/j.1365-2745.2008.01472.x
Levetin E, McMahon K (1996). Plants and society. New York, Brown Publishers, pp 447.
Lindo Z, Nilsson MC, Gundale MJ et al (2013) Bryophytes-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Global Change Biol. 19(7): 2022-2035. https://doi.org/10.1111/gcb.12175
Liu J, Bao W (2006) Major Bryophytes patches biomass and relation with environmental factors in a coniferous forest of the eastern Qinghai-Tibetan plateau. Chin. Bull. Bot. 23(6): 684-690. (in Chinese). https://10.3969/j.issn.1674-3466.2006.06.010
Löbel S, Mair L, Lönnell N et al (2018) Biological traits explain Bryophytes species distributions and responses to forest fragmentation and climatic variation. J. Ecol. 106(4): 1700-1713. https://doi.org/10.1111/1365-2745.12930
Martnez-Abaigar J, Nez-Olivera E, Beaucourt N et al 2003. Different physiological responses of two aquatic Bryophytes to enhanced ultraviolet-B radiation. J. Bryol. 25(1): 17-30. https://doi.org/10.1111/1365-2745.12930
Mateo RG, Vanderpoorten A, Muñoz J et al (2013) Modeling species distributions from heterogeneous data for the biogeographic regionalization of the European Bryophytes flora. Plos One 8, e55648. https://doi.org/10.1371/journal.pone.0055648
Meyer C, Gilbert D, Gillet F et al (2012) Using “Bryophytes and their associated testate amoeba” microsystems as indicators of atmospheric pollution. Ecol. Indic. 13(1): 144-151. https://doi.org/10.1016/j.ecolind.2011.05.020
Muir PR, Wallace CC, Done T et al (2015) Limited scope for latitudinal extension of reef corals. Science 348(6239): 1135-1138. doi: 10.1126/science.1259911
New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. part II: development of 1901-96 monthly grids of terrestrial surface climate. J. Climate 13(13): 829-856. https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2
Olden A, Raatikainen KJ, Tervonen K et al (2016) Grazing and soil pH are biodiversity drivers of vascular plants and Bryophytes in boreal wood-pastures. Agr. Ecosyst. Environ. 222: 171-184. https://doi.org/10.1016/j.agee.2016.02.018
Pearson RG, Raxworthy CJ, Nakamura M et al (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1): 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
Pepin N, Bradley RS, Diaz HF et al (2015) Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5(5), 424-430. https://doi.org/10.1038/nclimate2563
Phillips SJ, Dudík M, Elith J et al (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19(1): 181-197. https://doi.org/10.1890/07-2153.1
Porada P, Ekici A, Beer C (2016a) Effects of Bryophytes and lichen cover on permafrost soil temperature at large scale. The Cryosphere 10(5): 2291-2315. doi: 10.5194/tc-10-2291-2016
Porada P, Lenton TM, Pohl A et al (2016b) High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nat. commun. 7(1): 12113. https://doi.org/ 10.1038/ncomms12113
Sérgio C, Figueira R, Draper D et al (2007) Modelling Bryophytes distribution based on ecological information for extent of occurrence assessment. Biol. Conserv. 135(3): 341-351. https://doi.org/10.1016/j.biocon.2006.10.018
Shen MG, Piao SL, Chen XQ et al (2016) Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Global Change Biol. 22(9): 3057-3066. https://doi.org/10.1111/gcb.13301
Skowronek S, Van De Kerchove R, Rombouts B et al (2018) Transferability of species distribution models for the detection of an invasive alien Bryophytes using imaging spectroscopy data. Int. J. Appl. Earth Obs. 68, 61-72. https://doi.org/10.1016/j.jag.2018. 02.001
Song SS, Liu XH, Bai XL et al (2015) Impacts of environmental heterogeneity on moss diversity and distribution of Didymodon (Pottiaceae) in Tibet, China. Plos one, 10(7): e0132346. https://doi.org/10.1371/journal.pone.0132346
Soudzilovskaia NA, van Bodegom PM, Cornelissen JH (2013) Dominant Bryophytes control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct. Ecol. 27(6): 1442-1454. https://doi.org/10.1111/1365-2435.12127
Sun S, Wu Y, Wang G et al (2013) Bryophytes species richness and composition along an altitudinal gradient in Gongga Mountain, China. PloS one, 8(3): e58131. https://doi.org/10.1371/journal.pone.0058131
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857): doi:1285-1293.DOI: 10.1126/science.3287615
Thompson LG, Yao T, Davis ME et al (2018) Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains. Quaternary Sci. Rev. 188: 1-14. https://doi.org/10.1016/j.quascirev.2018.03.003
Tomiolo S, Ward D (2018) Species migrations and range shifts: A synthesis of causes and consequences. Perspect. Plant Ecol. 33: 62-77. https://doi.org/10.1016/j.ppees.2018.06.001
Tuanmu MN, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 23(9): 1031-1045. https://doi.org/10.1111/ geb.12182
Tuba Zoltán, Slack NG (2011) Bryophytes Ecology and Climate Change: The Ecological Value of Bryophytes as Indicators of Climate Change. Bryophytes ecology and climate change, England, Cambridge University Press, PP 3-12.
Vicherová E, Glinwood R, Hájek T et al (2020) Bryophytes can recognize their neighbours through volatile organic compounds. Sci. Rep. 10(1): 1-11. https://doi.org/10.1038/s41598 -020-64108-y
Wan L, Zhang Y, Zhang X et al (2015) Comparison of land use/land cover change and landscape patterns in Honghe National Nature Reserve and the surrounding Jiansanjiang Region, China. Ecol. Indic. 51: 205-214. https://doi.org/10.1016/j.ecolind.2014.11.025
Wang S, Zhang Z, Wang Z (2015) Bryophytes communities as biomonitors of environmental factors in the Goujiang karst bauxite, southwestern China. Sci. Total Environ. 538: 270-278. https://doi.org/10.1016/j.scitotenv.2015.08.049
Wang ZM, Ye W, Xing FW (2019) Bryophyte diversity on a tropical continental island (Hainan, China): potential vulnerable species and environmental indicators. J. Bryol. 41(4): 350-360. https://doi.org/10.1080/03736687.2019.1653557
Weber TC (2011) Maximum entropy modeling of mature hardwood forest distribution in four U.S. states. Forest Ecol. Manag. 261(3): 779-788. https://doi.org/10.1016/j.foreco.2010.12.009
Weis E, Santarius KA (1986) Heat sensitivity and thermal adaptation of photosynthesis in liverwort thalli. Oecologia 69(1): 134-139. https://doi.org/10.1007/BF00399049
Wu P, Wang M (2001) Relationship of the tropical elements of the Bryophytes between Hengduan Mts., southwest China and Taiwan province, southeast China. Guizhou Sci. 19(4): 6-9. (in Chinese)
Wu Y, Cheng G, Gao Q (2003a) Bryophytes’s Ecology Functions and Its Significances in Revegetation. J. Desert Res. 23: 9-14. (in Chinese)
Wu Y, Gao Q, Cheng, G et al (2002b) Response of Bryophytes to global change and its bio- indicatortation. J. Appl. Ecol. 13: 895-900. (in Chinese)
Yao J, Chen Y, Zhao Y et al (2018) Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China. Theor. Appl. Climatol. 131(3-4): 1503-1515. https://doi.org/10.1007/s00704-017-2058-0
Yao T, Xue Y, Chen D et al (2019) Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi-disciplinary approach with observation, modeling and analysis. Bull. Amer. Meteor. Soc., 100(3): 423-444. https://doi.org/10.1175/BAMS-D-17-0057.1
You J, Qin X, Ranjitkar S et al (2018) Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 8: 5879. https://doi.org/10.1038/s41598-018-24360-9
Zanatta F, Engler R, Collart F et al (2020) Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat Commun 11: 5601. https://doi.org/10.1038/s41467-020-19410-8
Zhang K, Yao L, Meng JS et al (2018) Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634, 1326-1334. https://doi.org/10.1016/j.scitotenv.2018.04.112
Zhang Z, Chang J, Xu C et al (2018) The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 635: 443-451. https://doi.org/10.1016/j.scitotenv.2018.04.113
Zhu X, Wu T, Li R et al (2017) Impacts of Summer Extreme Precipitation Events on the Hydrothermal Dynamics of the Active Layer in the Tanggula Permafrost Region on the Qinghai-Tibetan Plateau. J. Geophys. Res. 122(21): 11559-11567. https://doi.org/10.1002/ 2017JD026736
Zou D, Zhao L, Sheng Y et al (2016) A New Map of the Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11:1-28. doi:10.5194/tc-2016-187