[1] R.a. Crittenden, M.J. Playne, Production, properties and applications of food-grade oligosaccharides, Trends in food science & technology 7 (1996) 353-361.
[2] T. Miyake, M. Yoshida, K. Takeuchi, Imparting low-or anti-cariogenic property to orally-usable products, Google Patents, 1985.
[3] Y. Machida, F. Fukui, T. Komoto, Promoting the proliferation of intestinal bifidobacteria, Google Patents, 1988.
[4] A. Tanriseven, Ş. Doğan, Production of isomalto-oligosaccharides using dextransucrase immobilized in alginate fibres, Process Biochemistry 37 (2002) 1111-1115.
[5] T. Kuriki, M. Yanase, H. Takata, Y. Takesada, T. Imanaka, S. Okada, A new way of producing isomalto-oligosaccharide syrup by using the transglycosylation reaction of neopullulanase, Appl. Environ. Microbiol. 59 (1993) 953-959.
[6] J.W. Yun, M.G. Lee, S.K. Song, Continuous production of isomalto-oligosaccharides from maltose syrup by immobilized cells of permeabilizedAureobasidium pullulans, Biotechnology letters 16 (1994) 1145-1150.
[7] A. Pereira, F. Costa, M. Rodrigues, F. Maugeri, In vitro synthesis of oligosaccharides by acceptor reaction of dextransucrase from Leuconostoc mesenteroides, Biotechnology letters 20 (1998) 397-401.
[8] F.B. Paul, P.F. Monsan, M.M. Remaud, V.P. Pelenc, Process for the enzymatic preparation from sucrose of a mixture of sugars having a high content of isomaltose, and products obtained, Google Patents, 1989.
[9] K. Mountzouris, S. Gilmour, R. Rastall, Continuous production of oligodextrans via controlled hydrolysis of dextran in an enzyme membrane reactor, Journal of food science 67 (2002) 1767-1771.
[10] E. Khalikova, P. Susi, T. Korpela, Microbial dextran-hydrolyzing enzymes: fundamentals and applications, Microbiol. Mol. Biol. Rev. 69 (2005) 306-325.
[11] E. Abdel-Rahman, Q. Smejkal, R. Schick, S. El-Syiad, T. Kurz, Influence of dextran concentrations and molecular fractions on the rate of sucrose crystallization in pure sucrose solutions, Journal of food engineering 84 (2008) 501-508.
[12] Y. Aslan, A. Tanriseven, Immobilization of Penicillium lilacinum dextranase to produce isomaltooligosaccharides from dextran, Biochemical Engineering Journal 34 (2007) 8-12.
[13] F.E. Mouafi, E.A. Karam, H. Hassan, Production of Dextranase from Agro-industrial Wastes by Aspergillus awamori F-234 under Solid State Fermentation, Research Journal of Pharmaceutical Biological and Chemical Sciences 7 (2016) 1451-1459.
[14] S. Iqbal, A. Aman, S. Bano, N.N. Sidduiqui, A. Ansari, S. Ali-Ul-Qader, Role of nutrients and environmental conditions for the production of dextransucrase from L. mesenteroides KIBGE-IB26, Pakistan journal of pharmaceutical sciences 28 (2015).
[15] R.R. Zohra, A. Aman, A. Ansari, M.S. Haider, S.A.U. Qader, Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25, International journal of biological macromolecules 78 (2015) 243-248.
[16] S. Thitaram, C.-H. Chung, D. Day, A. Hinton Jr, J. Bailey, G. Siragusa, Isomaltooligosaccharide increases cecal Bifidobacterium population in young broiler chickens, Poultry science 84 (2005) 998-1003.
[17] A.K. Goulas, J.M. Cooper, A.S. Grandison, R.A. Rastall, Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase, Biotechnology and bioengineering 88 (2004) 778-787.
[18] X. Mao, S. Wang, F. Kan, D. Wei, F. Li, A novel dextran dextrinase from Gluconobacter oxydans DSM-2003: purification and properties, Applied biochemistry and biotechnology 168 (2012) 1256-1264.
[19] P. Jaiswal, S. Kumar, Impact of media on isolation of dextranase producing fungal strains, J Sci Res 55 (2011) 71-76.
[20] P.K. Robinson, Enzymes: principles and biotechnological applications, Essays in biochemistry 59 (2015) 1-41.
[21] A.A. Homaei, R. Sariri, F. Vianello, R. Stevanato, Enzyme immobilization: an update, Journal of chemical biology 6 (2013) 185-205.
[22] R. Ahmad, M. Sardar, Enzyme immobilization: an overview on nanoparticles as immobilization matrix, Biochemistry and Analytical Biochemistry 4 (2015) 1.
[23] S. Datta, L.R. Christena, Y.R.S. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech 3 (2013) 1-9.
[24] R.A. Sheldon, Enzyme immobilization: the quest for optimum performance, Advanced Synthesis & Catalysis 349 (2007) 1289-1307.
[25] B.M. Brena, F. Batista-Viera, Immobilization of Enzymes, in: J.M. Guisan (Ed.) Immobilization of Enzymes and Cells, Humana Press, Totowa, NJ, 2006, pp. 15-30.
[26] M. I. Wahba, M. E. Hassan, Novel grafted agar disks for the covalent immobilization of β‐D‐galactosidase, Biopolymers 103 (2015) 675-684.
[27] T.T.M. Hassan Mohamed E, Omer Ahmed M. , Methods of Enzyme Immobilization, International Journal of Current Pharmaceutical Review and Research 7 (2016) 385-392.
[28] K. O'driscoll, [12] Techniques of enzyme entrapment in gels, Methods in enzymology, Elsevier1976, pp. 169-183.
[29] C. Garcia‐Galan, Á. Berenguer‐Murcia, R. Fernandez‐Lafuente, R.C. Rodrigues, Potential of different enzyme immobilization strategies to improve enzyme performance, Advanced Synthesis & Catalysis 353 (2011) 2885-2904.
[30] T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: A review, Adsorption 20 (2014) 801-821.
[31] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, nature 363 (1993) 603.
[32] T. Garlet, C. Weber, R. Klaic, E. L Foletto, S.L. Jahn, M. Mazutti, R. Kuhn, Carbon Nanotubes as Supports for Inulinase Immobilization, 2014.
[33] R.G. Compton, G.G. Wildgoose, E.L.S. Wong, Carbon Nanotube–Based Sensors
and Biosensors, in: A. Merkoçi (Ed.) Biosensing using nanomaterials, John Wiley & Sons, Inc., Hoboken, New Jersey, US, 2009, pp. 1-37.
[34] W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes, Biotechnology advances 29 (2011) 889-895.
[35] N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins, Journal of Chemistry 2013 (2013) 18.
[36] W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.-P. Sun, Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation, Nano Letters 2 (2002) 311-314.
[37] T. Garlet, C. Weber, R. Klaic, E. Foletto, S. Jahn, M. Mazutti, R. Kuhn, Carbon nanotubes as supports for inulinase immobilization, Molecules 19 (2014) 14615-14624.
[38] N. Saifuddin, A. Raziah, A. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins, Journal of Chemistry 2013 (2012).
[39] S. Yin, P.K. Shen, S. Song, S.P. Jiang, Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells, Electrochimica Acta 54 (2009) 6954-6958.
[40] S.K. Jung, Y.R. Chae, J.M. Yoon, B.W. Cho, K.G. Ryu, Immobilization of glucose oxidase on multi-wall carbon nanotubes for biofuel cell applications, Journal of microbiology and biotechnology 15 (2005) 234-238.
[41] I. Pavlidis, T. Tsoufis, A. Enotiadis, D. Gournis, H. Stamatis, Functionalized multi‐Wall carbon nanotubes for lipase immobilization, Advanced Engineering Materials 12 (2010) B179-B183.
[42] Q. Wang, L. Zhou, Y. Jiang, J. Gao, Improved stability of the carbon nanotubes–enzyme bioconjugates by biomimetic silicification, Enzyme and microbial technology 49 (2011) 11-16.
[43] Z. Rastian, A. Khodadadadi, F. Vahabzade, Y. Mortazavi, Functionalization of Multi -Walled Carbon Nanotubes for Lipase Immobilization, The Journal of MacroTrends in Technology and Innovation 1 (2013) 65-71.
[44] Z. Rastian, A.A. Khodadadi, F. Vahabzadeh, C. Bortolini, M. Dong, Y. Mortazavi, A. Mogharei, M.V. Naseh, Z. Guo, Facile surface functionalization of multiwalled carbon nanotubes by soft dielectric barrier discharge plasma: Generate compatible interface for lipase immobilization, Biochemical engineering journal 90 (2014) 16-26.
[45] A. Jamie, A.S. Alshami, Z.O. Maliabari, M. Ali Ateih, O.C.S. Al Hamouz, Immobilization and enhanced catalytic activity of lipase on modified MWCNT for oily wastewater treatment, Environmental Progress & Sustainable Energy 35 (2016) 1441-1449.
[46] R.A.M. Azevedo, Immobilization of peroxidase on functionalized carbon nanotubes for synthesis of biocatalysts with high performance, (2014).
[47] K. Du, J. Sun, X. Zhou, W. Feng, X. Jiang, P. Ji, A two‐enzyme immobilization approach using carbon nanotubes/silica as support, Biotechnology progress 31 (2015) 42-47.
[48] A. Zniszczoł, A.P. Herman, K. Szymańska, J. Mrowiec-Białoń, K.Z. Walczak, A. Jarzębski, S. Boncel, Covalently immobilized lipase on aminoalkyl-, carboxy-and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters, Enzyme and microbial technology 87 (2016) 61-69.
[49] F.A. Erhardt, H.-J. Jördening, Immobilization of dextranase from Chaetomium erraticum, Journal of biotechnology 131 (2007) 440-447.
[50] M. Bashari, P. Wang, A. Eibaid, Y. Tian, X. Xu, Z. Jin, Ultrasound-assisted dextranase entrapment onto Ca-alginate gel beads, Ultrasonics sonochemistry 20 (2013) 1008-1016.
[51] C. Torras, D. Nabarlatz, G. Vallot, D. Montané, R. Garcia-Valls, Composite polymeric membranes for process intensification: Enzymatic hydrolysis of oligodextrans, Chemical Engineering Journal 144 (2008) 259-266.
[52] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical biochemistry 72 (1976) 248-254.
[53] A. Manjon, J. Iborra, P. Lozano, M. Canovas, A practical experiment on enzyme immobilization and characterization of the immobilized derivatives, Biochemical education 23 (1995) 213-216.
[54] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical chemistry 31 (1959) 426-428.
[55] C. Mateo, J.M. Palomo, M. Fuentes, L. Betancor, V. Grazu, F. López-Gallego, B.C. Pessela, A. Hidalgo, G. Fernández-Lorente, R. Fernández-Lafuente, Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins, Enzyme and Microbial Technology 39 (2006) 274-280.
[56] F. López-Gallego, L. Betancor, C. Mateo, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, J.M. Guisán, R. Fernández-Lafuente, Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports, Journal of Biotechnology 119 (2005) 70-75.
[57] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme and microbial technology 40 (2007) 1451-1463.
[58] E. Hamzehi, W. Pflug, Sorption and binding mechanism of polysaccharide cleaving soil enzymes by clay minerals, Zeitschrift für Pflanzenernährung und Bodenkunde 144 (1981) 505-513.
[59] N.A. Mansor, J.-P. Tessonnier, A. Rinaldi, S. Reiche, M. Kutty, Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic groups, Sains Malays 41 (2012) 603-609.
[60] I. Migneault, C. Dartiguenave, M.J. Bertrand, K.C. Waldron, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, Biotechniques 37 (2004) 790-802.
[61] K. Ramani, R. Boopathy, C. Vidya, L.J. Kennedy, M. Velan, G. Sekaran, Immobilisation of Pseudomonas gessardii acidic lipase derived from beef tallow onto mesoporous activated carbon and its application on hydrolysis of olive oil, Process biochemistry 45 (2010) 986-992.
[62] D. Radva, J. Spanyol, J. Kosáry, Testing of the effect of reaction parameters on the enzyme immobilization by adsorption and cross-linking processes with kinetic desorption method, Food Technology and Biotechnology 49 (2011) 257-262.
[63] S.A. Ansari, Q. Husain, Bioaffinity based immobilization of almond (Amygdalus communis) β-galactosidase on Con A-layered calcium alginate-cellulose beads: Its application in lactose hydrolysis in batch and continuous mode, Iranian Journal of Biotechnology 9 (2011) 290-301.
[64] H. Chen, Q. Zhang, Y. Dang, G. Shu, The effect of glutaraldehyde cross-linking on the enzyme activity of immobilized β-galactosidase on chitosan bead, Advance Journal of Food Science and Technology 5 (2013) 932-935.
[65] O. Barbosa, R. Torres, C. Ortiz, R. Fernandez-Lafuente, Versatility of glutaraldehyde to immobilize lipases: Effect of the immobilization protocol on the properties of lipase B from Candida antarctica, Process Biochemistry 47 (2012) 1220-1227.
[66] H. Essa, E. Magner, J. Cooney, B. Hodnett, Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporous silicates, Journal of Molecular Catalysis B: Enzymatic 49 (2007) 61-68.
[67] D.-H. Zhang, L.-X. Yuwen, L.-J. Peng, Parameters affecting the performance of immobilized enzyme, Journal of chemistry 2013 (2013).
[68] Z. Lei, Q. Jiang, Synthesis and properties of immobilized pectinase onto the macroporous polyacrylamide microspheres, Journal of agricultural and food chemistry 59 (2011) 2592-2599.
[69] D.-H. Zhang, L.-X. Yuwen, C. Li, Y.-Q. Li, Effect of poly (vinyl acetate–acrylamide) microspheres properties and steric hindrance on the immobilization of Candida rugosa lipase, Bioresource technology 124 (2012) 233-236.
[70] Z. Lei, S. Bi, Preparation and properties of immobilized pectinase onto the amphiphilic PS-b-PAA diblock copolymers, Journal of biotechnology 128 (2007) 112-119.
[71] W. Xie, N. Ma, Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles, Biomass and Bioenergy 34 (2010) 890-896.
[72] S. Zhang, Q. Deng, Y. Li, M. Zheng, C. Wan, C. Zheng, H. Tang, F. Huang, J. Shi, Novel amphiphilic polyvinylpyrrolidone functionalized silicone particles as carrier for low-cost lipase immobilization, Royal Society open science 5 (2018) 172368.
[73] M. Mohy Eldin, E. Hassan, M. Elaassar, β-Galactosidase covalent immobilization on the surface of alginate beads and its application in lactose hydrolysis, Deutsche Lebensmittel-Rundschau 101 (2005) 255-259.
[74] M. El-Masry, A. De Maio, S. Di Martino, N. Diano, U. Bencivenga, S. Rossi, V. Grano, P. Canciglia, M. Portaccio, F. Gaeta, Modulation of immobilized enzyme activity by altering the hydrophobicity of nylon-grafted membranes: Part 1. Isothermal conditions, Journal of Molecular Catalysis B: Enzymatic 9 (2000) 219-230.
[75] B.S. Ferreira, P. Fernandes, J.M. Cabral, CHAPTER FOUR DESIGN AND MODELLING OF IMMOBILISED BIOCATALYTIC REACTORS, Multiphase bioreactor design (2001) 90.
[76] G. Bayramoglu, Y. Tunali, M.Y. Arica, Immobilization of β-galactosidase onto magnetic poly (GMA–MMA) beads for hydrolysis of lactose in bed reactor, Catalysis Communications 8 (2007) 1094-1101.
[77] L. Betancor, F. López-Gallego, A. Hidalgo, N. Alonso-Morales, G.D.-O.C. Mateo, R. Fernández-Lafuente, J.M. Guisán, Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions, Enzyme and Microbial Technology 39 (2006) 877-882.
[78] J. Zhu, G. Sun, Lipase immobilization on glutaraldehyde-activated nanofibrous membranes for improved enzyme stabilities and activities, Reactive and Functional Polymers 72 (2012) 839-845.
[79] L. Fernandez-Lopez, N. Rueda, R. Bartolome-Cabrero, M.D. Rodriguez, T.L. Albuquerque, J.C. dos Santos, O. Barbosa, R. Fernandez-Lafuente, Improved immobilization and stabilization of lipase from Rhizomucor miehei on octyl-glyoxyl agarose beads by using CaCl2, Process Biochemistry 51 (2016) 48-52.
[80] M.Y. Arıca, G. Bayramoǧlu, Reversible immobilization of tyrosinase onto polyethyleneimine-grafted and Cu (II) chelated poly (HEMA-co-GMA) reactive membranes, Journal of Molecular Catalysis B: Enzymatic 27 (2004) 255-265.
[81] M. Bashari, S. Abbas, X. Xu, Z. Jin, Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel, Ultrasonics sonochemistry 21 (2014) 1325-1334.
[82] D.F. Gómez-Casati, J. Preiss, A.A. Iglesias, Studies on the effect of temperature on the activity and stability of cyanobacterial ADP-glucose pyrophosphorylase, Archives of biochemistry and biophysics 384 (2000) 319-326.
[83] M.M. Elnashar, M.A. Yassin, Lactose hydrolysis by β-galactosidase covalently immobilized to thermally stable biopolymers, Applied Biochemistry and Biotechnology 159 (2009) 426-437.
[84] J. Cabral, J. Kennedy, Covalent and coordination immobilization of proteins, Bioprocess technology 14 (1991) 73-138.
[85] E. Taqieddin, M. Amiji, Enzyme immobilization in novel alginate–chitosan core-shell microcapsules, Biomaterials 25 (2004) 1937-1945.
[86] N. Markoglou, I.W. Wainer, Immobilized enzyme reactors in liquid chromatography: On-line bioreactors for use in synthesis and drug discovery, Handbook of Analytical Separations 4 (2003) 215-234.