Amir HG., Shamsuddin ZH., Halimi MS., Ramlan MF, Marziah M (2003) N2 fixation, nutrient accumulation and plant growth promotion by rhizobacteria in association with oil palm seedlings. Pak J Biol Sci 6, 1269-1272.
Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29: 911-922. https://doi.org/10.1016/s0038-0717(96)00218-0.
Boddey RM, Deoliveira OC, Urquiaga S, Reis VM, Deolivares FL, Baldani VLD, Dobereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174: 195-209. https://doi.org/10.1007/bf00032247.
Chalk PM (1991) The contribution of associative and symbiotic nitrogen fixation to the nitrogen nutrition of non-legumes. Plant Soil 132: 29-39. https://doi.org/10.1007/bf00011009.
Dart PJ (1986) Nitrogen fixation associated with non-legumes in agriculture. Plant Soil 90: 303-334. https://doi.org/10.1007/bf02277405.
Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12: 1193-1206. https://doi.org/10.1111/pbi.12279.
Fox AR, Soto G, Valverde C, Russo D, Lagares A, Zorreguieta A, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R, Ayub ND (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18: 3522-3534. https://doi.org/10.1111/1462-2920.13376.
Geddes BA, Ryu MH, Mus F, Costas AG, Peters JW, Voigt CA, Poole P (2015) Use of plant colonizing bacteria as chassis for transfer of N2-fixation to cereals. Curr Opin Biotechnol 32: 216-222. https://doi.org/10.1016/j.copbio.2015.01.004.
Hao TY, Chen SF (2017) Colonization of wheat, maize and cucumber by Paenibacillus polymyxa WLY78. PLoS One 12: e0169980. https://doi.org/10.1371/journal.pone.0169980.
Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe In 15: 233-242. https://doi.org/10.1094/mpmi.2002.15.3.233.
Iniguez AL, Dong YM, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe In 17: 1078-1085. https://doi.org/10.1094/mpmi.2004.17.10.1078.
Ke XB, Feng S, Wang J, Lu W, Zhang W, Chen M, Lin M (2019) Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol 42: 248-260. https://doi.org/10.1016/j.syapm.2018.10.010.
Li YB, Li YL, Zhang HW, Wang MY, Chen SF (2019) Diazotrophic Paenibacillus beijingensis BJ-18 provides nitrogen for plant and promotes plant growth, nitrogen uptake and metabolism. Front Microbiol 10: 1119. https://doi.org/10.3389/fmicb.2019.01119.
Li YL, Chen SS (2019) Fusaricidin produced by Paenibacillus polymyxa WLY78 induces systemic resistance against Fusarium wilt of cucumber. Int J Mol Sci 20: 5240. https://doi.org/10.3390/ijms20205240.
Oliveira ALM, Santos OJAP, Marcelino PRF, Milani KML, Zuluaga MYA, Zucareli C, Goncalves LSA (2017) Maize inoculation with Azospirillum brasilense Ab-V5 cells enriched with exopolysaccharides and polyhydroxybutyrate results in high productivity under low N fertilizer input. Front Microbiol 8: 1873. https://doi.org/10.3389/fmicb.2017.01873.
Padda KP, Puri A, Zeng QW, Chanway CP, Wu XQ (2017) Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of Paenibacillus polymyxa. Botany 95: 933-942. https://doi.org/10.1139/cjb-2017-0056.
Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21: 541-554. https://doi.org/10.1093/molbev/msh047.
Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Diaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8: e63666. https://doi.org/10.1371/journal.pone.0063666.
Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif− mutant strains. Mol Plant Microbe In 14: 358-366. https://doi.org/10.1094/mpmi.2001.14.3.358.
Van Deynze A, Zamora P, Delaux PM, Heitmann C, Jayaraman D, Rajasekar S, Graham D, Maeda J, Gibson D, Schwartz KD, Berry AM, Bhatnagar S, Jospin G, Darling A, Jeannotte R, Lopez J, Weimer BC, Eisen JA, Shapiro HY, Ane JM, Bennett AB (2018) Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol 16: e2006352. https://doi.org/10.1371/journal.pbio.2006352.
Wang LY, Zhang LH, Liu ZZ, Zhao DH, Liu XM, Zhang B, Xie JB, Hong YY, Li PF, Chen SF, Dixon R, Li JL (2013) A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet 9: e1003865. https://doi.org/10.1371/journal.pgen.1003865.
Wang TS, Zhao XY, Shi HW, Sun L, Li YB, Li Q, Zhang HW, Chen SF, Li JL (2018) Positive and negative regulation of transferred nif genes mediated by indigenous GlnR in Gram-positive Paenibacillus polymyxa. PLoS Genet 14: e1007629. https://doi.org/10.1371/journal.pgen.1007629.
Xie JB, Du ZL, Bai LQ, Tian CF, Zhang YZ, Xie JY, Wang TS, Liu XM, Chen X, Cheng Q, Chen SF, Li JL (2014) Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 10: e1004231. https://doi.org/10.1371/journal.pgen.1004231.
Xie JB, Shi HW, Du ZL, Wang TS, Liu XM, Chen SF (2016) Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci Rep 6: 21329. https://doi.org/10.1038/srep21329.