Biotic plant-soil feedback has been widely studied, and may be particularly important in resource-poor areas. However, the roles of soil nutrient cycling in affecting plant growth in this process still remained unclear. The aim of this study was to explore the roles of soil biota in regulating nutrient cycling by conducting a two-phase feedback experiment in a dry-hot valley, with a conditioning phase during which there were Dodonaea viscosa or no D. viscosa growing in the soil, and a feedback phase in which the effect of the conditioned soil biota on D. viscosa performance was measured. The growth of D. viscosa significantly reduced soil N after the conditioning phase. However, D. viscosa showed a positive plant-soil feedback. In the feedback phase, the D. viscosa conditioned soil promoted the stem diameter, leaf area, and leaf dry mass content of D. viscosa. Total biomass was also significantly higher in D. viscosa conditioned soil than that in not conditioned soil. In contrast, soil sterilization had a negative effect on the growth of D. viscosa, with a significant reduction in plant biomass, especially in D. viscosa conditioned soil, and soil sterilization significantly increased the root: shoot biomass ratio and litter mass. Furthermore, we showed that although the biota-driven changes in enzyme activities correlated with the leaf N and P amount especially P amount, the enzyme activity was not the main reason to promote D. viscosa growth in the conditioned soil.