IMRT and VMAT can shape the dose to the concave target in the CW and IMN in breast cancer radiotherapy. In this study, we systematically compared the dosimetric parameters of two techniques, IMRT and VMAT, at our institute for 30 cases of post-mastectomy left-sided breast cancer patients. The results of our study indicated that both IMRT and VMAT provided good coverage of the target, while VMAT showed, with statistical significance, more conformity and more dose homogeneity in the target area of CW and IMN, compared with those of IMRT, by avoiding areas of under-dose, and at the same time eliminating areas of relative overdose. Our VMAT significantly reduced the near-maximum dose of the PTV of CW and IMN, which was 54.3 ± 0.2 Gy, as compared with 55.4 ± 1.7 Gy from a study by Zhang et al. [18] and 54.93 ± 0.87 Gy from a study by Ma et al. [20]. Furthermore, the increase in the near-minimum doses, V95% and V100% were higher in the VMAT plans than in the IMRT plans: 48.7 ± 0.3 Gy, as compared with 48.5 ± 2.2 Gy from a study by Zhang et al. [18] and 47.77 ± 0.35 Gy from a study by Ma et al [20]. The values of HI and CN in our study signify that slightly better homogeneity and conformality of target coverage were attained in VMAT plans than in IMRT plans. These results were also better than those reported by other studies [18–20, 22]. Improving the homogeneity of irradiation is vital for PMRT in locally advanced breast cancers because it may reduce the cute complication rate, as well as the occurrence of long-term fibrosis [36]. We also found that, with IMRT plans, it was difficult to achieve dose coverage for targets with CW and IMN of large curvature, while the VMAT plan was easier to achieve, in close agreement with the results of Zhang et al. [18].
In the optimization of VMAT and IMRT, the heart, ipsilateral lung and contralateral breast were considered the three most important OARs due to their large volumes. These OARs were protected by adjusting the priority values to reduce the maximum percent dose and scatter dose. Compared with our IMRT plans and other studies of VMAT plans, the mean dose to the heart was comparably lower in our VMAT plans, 5.2 ± 0.9 Gy, while it was 13.5 ± 5.0 Gy according to Zhang [18], 7.2 ± 2.3 Gy according to Zhao [19], 11.9 ± 5.06 Gy according to Ma [20], 9.3 ± 1.1 Gy according to Zhang [21], 7.7 ± 1.1 Gy according to Xie [22] and 7.4 ± 1.4 Gy according to Wang [23]. The low and medium doses received by the heart were also significantly lower with the VMAT technique than with the IMRT technique, except for V2.5. In our study, the volume of heart received more than 2.5 Gy (lower dose) was increased by 8.80%, whereas the value in VMAT was also clinically acceptable. In addition, our NCTP values based on the relative seriality model further verified that the VMAT plans provide better protection for the heart (0.34% vs 0.86%). This result differs from those of Wang et al. [23], in which the mean dose, V5, V10, V20, and V30 of the heart are the highest for VMAT out of these techniques. For the ipsilateral lung and whole-lung, both mean dose and volume received more than 5 Gy, 10 Gy, 20 Gy and 30 Gy were lower in VMAT plans; only the differences in the V5 were not statistically significant. Although the V2.5 was increased in VMAT plans, the risks of pulmonary toxicity, SCCP and EAR were not increased. Compared with previous studies of VMAT plans for PMRT patients [17–23], the low-dose exposure volume of the ipsilateral lung and heart were lower, and the values of the ipsilateral lung and heart V5 of VMAT plans were also lower, 46.1% and 20.9%. These values were 83.0% and 70.2% according to Popescu [17], 61.1% and 78.0% according to Zhang [18], 70.36% and 42.33% according to Ma [20], 43.5% (whole lung) and 66.9% according to Zhang [21], 35.7% (whole lung) and 48.6% according to Xie [22] and 48.9% and 25.5% according to Wang [23].
Except for acute and late radiation damage to the heart and ipsilateral lung, the delivery of low-dose irradiation to healthy tissue, especially to the contralateral breast and lung, has been estimated to double the risk of subsequent malignancy, and this risk is enhanced with increasing dose [25]. Based on our study, it was demonstrated that VMAT would not significantly increase the dose to the contralateral tissue compared with IMRT plans (p < 0.05), which is contradictory to the reports of Wang et al. [23] and can be explained by differences in field setups. In the study by Wang et al., the tangential fields were used in IMRT plans, allowing full avoidance of the contralateral breast and lung. On the other hand, with fully modulated multibeam IMRT techniques, such as sever beam with gantry angles of 300°, 320°, 340°, 20°, 100°, 115° and 130°, a larger volume of normal tissue is exposed to a ‘low-dose bath’. However, there are potential advantages for special anatomical situations in the presence of proximity of the heart to the inner side of the CW or when irradiation of the internal mammary lymph-node chain is indicated. And IMRT planning with two or four tangential photon beam arrangements in PMRT patients can be challenging. As reported by Zhang et al. [21], the CN of the target area of the CW was only 0.51 in 2-tangent fields IMRT plans and 0.68 in 4-tangent fields IMRT plans. In a dosimetric analysis of 85 patients using multi-fields (6–12 fields) [13], the homogeneity and conformity were improved, in which the HI and CI of PTV could reach 0.13 and 1.41.
These results show that VMAT is the optimal technique for all PMRT patients, especially considering the complexity of the target and patient geometry. In our study, to find the balance between the dose to the target area and normal tissue in VMAT plans, it is possible to reduce the low-dose radiation to normal tissue while the target coverage and conformality reach the level of IMRT plans. We adopted the following in VMAT planning. 1) EUD parameters were used to control the dose of OARs during optimization, the EUD has more advantages in controlling the mean dose of OARs [37]. 2) Virtual block was used to restrict the low-dose area, so the MU of VMAT was small when the gantry angle was vertical with the PTV of CW and IMN using virtual block, it only improved the PTV distribution without increasing the dose of OARs. 3) Optimization parameters were set for target areas separately and additional optimization parameters added to targets areas where it was difficult to reach the prescribed dose. In the above ways, our VMAT plans achieved the initial goal, the V5 of OARs was well controlled, such as < 50% in the ipsilateral lung, < 25% in the heart, < 3% in the contralateral lung, < 12% in the contralateral breast and < 25% in all normal tissues. These results are similar to those of other groups planned with tangent field IMRT [21, 22]. Lai et al. proposed [24] that the low-dose regions could be further reduced by using modified VMAT plans with the half-field technique and flattening filter-free beams, which lower the dose to the heart even lower than that in 3D-CRT. We will perform further research on this topic in the future.
Another clinical advantage of the use of VMAT is that it generally takes fewer MUs and improves the efficiency of plan delivery, compared with IMRT plans. Our results showed that the total MUs for VMAT plans were decreased by an average of 31.5%, and the treatment time was decreased by an average of 71.4%, compared with that of IMRT, consistent with other studies [18, 19].
Finally, we must clarify that the impact of respiratory movement on the CW was not considered in this study. Two methods to reduce the impact of respiratory movement on VMAT have been reported in the literature: one is to adopt respiratory gating or deep inspiration breath-hold mode for treatment [38–39], and the other is to use the virtual bolus method for plan optimization to compensate for CW modifications that may occur during treatment [40].