Study design and setting
The study area was the Rufiji District, located in southern Tanzania, which has been described previously [32, 33]. A pilot project was implemented from September 2015 to June 2018. Two control wards (Bungu and Kibiti) and two intervention wards (Chumbi and Ikwiriri) were selected. Based on the malaria incidence rates recorded the preceding year by staff at the local HFs, each arm contained one high-transmission and one low transmission-ward. In this study, malaria incidence <20/1000 cases and ≥ 20/1000 cases were considered as low and high transmission wards, respectively. Since these wards (except Chumbi) had been part of the previous Health and Demographic Surveillance System site (HDSS), they were considered well prepared for testing and treatment evaluation of the proposed model under programme conditions [34]. The two control wards received no interventions beyond what was provided by the NMCP, primarily LLINs. Fourteen facilities were located in the control wards, eight in Bungu and six in Kibiti, but only one per ward was a proper health centre, the others being dispensaries. The intervention wards contained 11 HFs covering 18 villages, again with one proper health centre per ward, and the rest being dispensaries. Nearly 89% of the people in Rufiji live within 5 km of an HF [35]. Since the approximate distance between the centres of Ikwiriri (intervention ward) and Kibiti (control ward) was 30 km, it is unlikely that people from the control wards attended the screenings in the intervention wards. Based on the census of 2012, the total populations of the intervention and control wards in 2012 were 72,163 and 53,292, respectively [36]. The average household size in Rufiji was 4.4, and 45% of the total population was under 15 years of age [36]. Fig. 1 shows a map of the study area with the location of the pilot project wards.
The intervention
The locally tailored 1,7-mRCTR surveillance and response approach was the main intervention in the intervention communities, in addition to the existing malaria control prevention implemented by the Ministry of Health through NMCP. While the package of this project was deployed the intervention arm only, the existed health intervention by the government through the ministry of health continued equally in both arms. LLINs are the main malaria control in the district. Besides community screening and treatment, the 1,7-mRCTR approach included quality control supervision of case detecting capability through increasing parasitological examination rate of all suspected malaria cases at the corresponding community-level.
All village members through community health education campaigns were advised to seek treatment at a health facility for any febrile illness. Furthermore, information, education, and communication (IEC) materials were developed purposely with local-tailored key messages for the targeted community.
Within both the intervention and control wards, data quality assurance and malaria service availability and provision surveys were regularly conducted by the NMCP and CHMT as an integral part of their mandate and responsibility. The project team had special emphasis on the intervention sites and communicated any deficiencies observed to either the CHMT or NMCP for correction. On a random day of the week, the quality control team conducted a spot check survey at HFs to cross-check the quality, accuracy, and consistency of data and status of malaria supplies (diagnostics and antimalarials). These spot check visits were envisaged to increase the ensure compliance of the service providers to the standard operating procedures for malaria service provision at HFs as well as validate the quality of the data being submitted and used for decision making.
Weekly, all malaria suspects presenting to local HFs were tested for malaria by RDT or microscopy, were allocated to the villages of patient(s) residence. The response was mounted in the village with the highest ratio of the number of confirmed malaria positive cases/the number of suspects. There was no specified cutoff. The highest village specific malaria incidence ratio varied with time. Monday-Friday of the following week teams of community-based health care workers (CHCWs) set up community-based mobile test stations (cMTS) in different hamlets (sub-villages) of the ‘hot spot’ village, starting with those presumed to have the highest case ratio, but moving around to ensure the village-wide coverage of community members. The detailed activities for the 1,7-mRCTR implementation are provided in the Additional file 1 and study protocol which has been published elsewhere [33].
Implementation
Before the study began, formal meetings were held between the researchers, the District Medical Officer’s (DMO’s) office, the Council Health Management Team (CHMT) staff, and local community leaders to discuss the study objectives, procedures, and timelines. Accompanying printed materials in Swahili were distributed at this meeting to provide complementary project information. To maximize project acceptance after a village had been identified as a hotspot, weekly social mobilizations were initiated, i.e., the field supervisor and village community leaders held meetings to discuss the logistics and cMTS locations. Upon deciding on the locations, village leaders and CHCWs informed the rest of community members about the presence of the cMTS, emphasizing that testing and treatment were free. Although only the hotspot villages were targeted, people from neighbouring villages within the intervention sites, who came for testing were also tested and treated. When a village re-appeared as a hotspot, test station locations were chosen using information based on the previous time(s) of response.
Village members above six months of age were invited to be screened for malaria. On the day of screening, the participant’s informed consent was taken and registered. Finger-prick blood was collected from participants and used for both RDTs (CareStartTM Malaria Pf/PAN (HRP2/pLDH) Ag Combo RDT) and blood slides to test malaria parasitaemia. For prompt treatment, only RDTs results were used, and, if positive, treated with dihydroartemisinin-piperaquine (D-ARTEPP) following the national policy guidelines for malaria treatment [37]. The blood slides were used for quality control, and to determine the malaria species [32]. In case of complications or severe cases, the participants were referred to the nearby health facilities. The participants’ demographic information, travel history for the previous two weeks, medical histories such as medications taken, and vital signs were also recorded. Due to security problems in the study area, the activities stopped for eight months from January to August 2017 and resumed from September 2017 to April 2018. Fig.2 illustrates the schematic diagram of the 1,7-mRCTR implementation in the intervention area.
Evaluation
The primary measure of the effectiveness of 1,7-mRCTR, determined in advance, was the adjusted comparison of the changes in malaria prevalence from before the project to after the intervention in the control and intervention areas. This was a non-experimental study, the entire evaluation was based on the baseline and endline household cross-sectional surveys with independent samples conducted in both intervention and control areas. Fig. 3 shows the number of participants sampled for baseline and endline cross-sectional household surveys for the 1,7-mRCTR approach evaluation.
The baseline was created using data collected from September to November 2015, with the endline survey done from February to April 2018. A random sample of 2,000 households was selected based on community census data for each of the baseline and endline surveys. The sample size and power calculation for this evaluation can be found in the previously published protocol [33]. A structured questionnaire was designed based on the standard RBM-MERG guidelines with modification to fit the study area [38]. It was developed in English, translated into Swahili, and installed on tablets using the Open Data Kit software. A full description of the study’s aim and the objective was given to the head of the household at the first visit. All participants were provided with a written informed consent form describing the risks, benefits, and the participant’s rights to free diagnosis and treatment. The right to refuse participation without penalty was explained and guaranteed. If a household in the list could not be located or did not wish to participate, a nearby house with similar features was selected for replacement. At the household level, each occupant present was tested in situ for parasite infection using an RDT, blood smear, and filter papers. Only RDT results were considered in the analysis. Other people were not pricked because they only accepted to participate in the interviews without consenting to invasive procedures necessary for blood collection. However, this was not considered a serious problem that could bias the study because it was expected and addressed during the design stage where 20% of the calculated sample was added. The detailed methods for the baseline survey have been reported previously [32].
Statistical analysis
Baseline and endline prevalences were computed as the values of the intercepts in generalized estimating equations (GEE) clustering on household and using the identity link, with their standard errors. Univariate analyses were done to test the relationships between different potential explanatory variables and prevalent malaria. Comparisons between the intervention and control arms were done similarly for each survey. Malaria prevalence was modelled using GEEs with the logit link, clustering at the household level. The effect of 1,7-mRCTR was estimated by comparing the changes from the baseline malaria prevalence to that at the endline surveys (main effect ‘time’) in the two areas (main effect ‘area’), using the interaction term of area and ‘time’ (baseline vs endline) as the measure of programme effect (difference-of-differences). When the interaction effect is included in the model, the main effect of the area describes the difference between the two areas at baseline, and the main effect of time gives the ‘average’ change in odds of malaria from baseline to endline. The interaction effect represents the difference between the changes in the two areas.
Categorical variables were presented as numbers (percentages), while continuous variables were presented as mean (confidence interval)/medial (quartile range), respectively. Potential confounders included age (categorized as under 5 years, 5 to 14 years and above 15 years), sex, LLINs use the previous night, and socio-economic status (SES). The wealth index (SES) as a potential risk factor for malaria infection was generated using principal component analysis on a list of assets possessions to produce the SES quintiles [39].
For the duration of the project, routine data were available only for the intervention wards, and the only routinely collected case-related numbers were in HFs. Therefore, the case ratios (HFs cases/population) were analysed rather than true incidence values. A mixed-effects regression model with the village as a random effect was used to analyse the impact of the 1,7-mRCTR in reducing health facility case ratios between villages receiving malaria intervention and those not receiving it. The detailed analytical procedure for the health facility data analysis is described in Additional file 2. Statistical analyses were performed using STATA software (version 15.1, College Station, TX, USA) and SAS software (version 9.4, Cary, NC, USA).