Al-Ansari M, Alkubaisi N, Vijayaragavan P, Murugan K (2019) Antimicrobial potential of Streptomyces sp. to the Gram positive and Gram negative pathogens. J Infect Public Health 12:861–866. https://doi.org/10.1016/j.jiph.2019.05.016
Al-Ansari M, Kalaiyarasi M, Almalki MA, Vijayaraghavan P (2020) Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. J King Saud Univ - Sci 32:1993–1998. https://doi.org/10.1016/j.jksus.2020.02.005
Al-Dhabi NA, Esmail GA, Duraipandiyan V, Arasu MV (2019) Chemical profiling of Streptomyces sp. Al-Dhabi-2 recovered from an extreme environment in Saudi Arabia as a novel drug source for medical and industrial applications. Saudi J Biol Sci 26:758–766. https://doi.org/10.1016/j.sjbs.2019.03.009
Allcock S, Young EH, Holmes M, et al (2017) Antimicrobial resistance in human populations: Challenges and opportunities. Glob. Heal. Epidemiol. Genomics 2:1–7. http://doi: 10.1017/gheg.2017.4
Ayoubi H, Mouslim A, Moujabbir S, et al (2018) Isolation and phenotypic characterization of actinomycetes from Rabat neighborhood soil and their potential to produce bioactive compounds. African J Microbiol Res 12:186–191. https://doi.org/10.5897/ajmr2017.8761
Badji B, Mostefaoui A, Sabaou N, et al (2007) Isolation and partial characterization of antimicrobial compounds from a new strain Nonomuraea sp. NM94. J Ind Microbiol Biotechnol 34:403–412. https://doi.org/10.1007/s10295-007-0210-z
Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am J Clin Pathol 45:493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
Duddu MK, Guntuku G (2016) Isolation, screening and characterization of antibiotic producing actinomycetes from kapuluppada plastic waste dumping yard, visakhapatnam. Int J Pharm Pharm Sci 8:221–229. https://doi.org/10.22159/ijpps.2016v8i11.10110
El-Hadi A, Ahmed H, Hamzawy R (2019) Optimization and characterization of l-asparaginase production by a novel isolated streptomyces spp. strain. Egypt Pharm J 2:111-122. https://doi.org/10.4103/epj.epj_23_18
El-Naggar NE-A, El-Bindary AA-A, Abdel-Mogib M, Nour NS (2017) In vitro activity, extraction, separation and structure elucidation of antibiotic produced by Streptomyces anulatus NEAE-94 active against multidrug-resistant Staphylococcus aureus. Biotechnol Biotechnol Equip 31:418–430. https://doi.org/10.1080/13102818.2016.1276412
Fatima A, Aftab U, Shaaban KA, et al (2019) Spore forming Actinobacterial diversity of Cholistan Desert Pakistan: Polyphasic taxonomy, antimicrobial potential and chemical profiling. BMC Microbiol 19:49. https://doi.org/10.1186/s12866-019-1414-x
Gebreyohannes G, Moges F, Sahile S, Raja N (2013) Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pac J Trop Biomed 3:426–435. https://doi.org/10.1016/S2221-1691(13)60092-1
Hirsch CF, Christensen DL (1983) Novel method for selective isolation of actinomycetes. Appl Environ Microbiol 46:925–929. https://doi.org/10.1128/aem.46.4.925-929.1983
Hong-Thao PT, Mai-Linh NV, Hong-Lien NT, Van Hieu N (2016) Biological Characteristics and Antimicrobial Activity of Endophytic Streptomyces sp. TQR12-4 Isolated from Elite Citrus nobilis Cultivar Ham Yen of Vietnam. Int J Microbiol 2016. https://doi.org/10.1155/2016/7207818
Janus D, Hortschansky P, Kück U (2008) Identification of a minimal cre1 promoter sequence promoting glucose-dependent gene expression in the β-lactam producer Acremonium chrysogenum. Curr Genet 53:35–48. https://doi.org/10.1007/s00294-007-0164-8
Jung MR, David Horgen F, Orski S V, et al (2018) Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull. 127:704-716. https://doi.org/10.1016/j.marpolbul.2017.12.061
Kamjam M, Nopnakorn P, Zhang L, et al (2019) Streptomyces polaris sp. nov. and Streptomyces septentrionalis sp. nov., isolated from frozen soil. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 112:375–387. https://doi.org/10.1007/s10482-018-1166-x
Kapanen A, Stephen JR, Brüggemann J, et al (2007) Diethyl phthalate in compost: Ecotoxicological effects and response of the microbial community. Chemosphere 67:2201–2209. https://doi.org/10.1016/j.chemosphere.2006.12.023
Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 8:423–435. https://doi: 10.1038/nrmicro2333
Kumar A, Paul S, Kumari P, et al (2014a) Antibacterial and phytochemical assessment on various extracts of ipomoea pes-caprae (l.) R. Brthrough ftirand gc- ms spectroscopic analysis. Asian Journal of Pharmaceutical and Clinical Research 7:3. Kumar PS, Duraipandiyan V, Ignacimuthu S (2014b) Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7. Kaohsiung J Med Sci 30:435–446. https://doi.org/10.1016/j.kjms.2014.05.006
Kumari N, Menghani E, Mithal R (2019) GCMS analysis of compounds extracted from actinomycetes AIA6 isolates and study of its antimicrobial efficacy. Indian Journal of Chemical Technology . 26: 362-370. Lysenkova LN, Turchin KF, Danilenko VN, et al (2010) The first examples of chemical modification of oligomycin A. J Antibiot (Tokyo) 63:17–22. https://doi.org/10.1038/ja.2009.112
Magaldi S, Mata-Essayag S, Hartung De Capriles C, et al (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45. https://doi.org/10.1016/j.ijid.2003.03.002
Mathur N, Paliwal A, Mathur N, et al (2015) Characterization of antimicrobial compounds from Streptomyces isolates. J Chem Pharm Res 7(4):1–10. Murray LAM, McKinnie SMK, Moore BS, George JH (2020) Meroterpenoid natural products from: Streptomyces bacteria-the evolution of chemoenzymatic syntheses. Nat. Prod. Rep. 37:1334–1366
Musa Z, Ma J, Egamberdieva D, et al (2020) Diversity and Antimicrobial Potential of Cultivable Endophytic Actinobacteria Associated With the Medicinal Plant Thymus roseus. Front Microbiol 11:191. https://doi.org/10.3389/fmicb.2020.00191
Nain-Perez A, Barbosa LCA, Maltha CRA, Forlani G (2016) First total synthesis and phytotoxic activity of Streptomyces sp. metabolites abenquines. Tetrahedron Lett 57:1811–1814. https://doi.org/10.1016/j.tetlet.2016.03.038
Naureen H, Tala MF, Shaaban KA, et al (2017) A new furan carboxamide and two potential precursors from a terrestrial streptomycete. Z. Naturforsch- Sect B J Chem Sci 72:175–182. https://doi.org/10.1515/znb-2016-0202 Nepali K, Kumar S, Huang HL, et al (2016) 2-Aroylquinoline-5,8-diones as potent anticancer agents displaying tubulin and heat shock protein 90 (HSP90) inhibition. Org Biomol Chem 14:716–723. https://doi.org/10.1039/c5ob02100f
Nguyen TM, Kim J (2015) Antifungal and antibacterial activities of Streptomyces polymachus sp. nov. isolated from soil. Int J Syst Evol Microbiol 65:2385–2390. https://doi.org/10.1099/ijs.0.000268
Núñez-Montero K, Lamilla C, Abanto M, et al (2019) Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-43960-7
Qin S, Li J, Chen HH, et al (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna China. Appl Environ Microbiol 75:6176–6186. https://doi.org/10.1128/AEM.01034-09
Rex MA, Stuart CT, Etter RJ (2001) Do deep-sea nematodes show a positive latitudinal gradient of species diversity? The potential role of depth. Mar. Ecol. Prog. Ser. 210:297–298
Sanghvi G V., Ghevariya D, Gosai S, et al (2014) Isolation and partial purification of erythromycin from alkaliphilic Streptomyces werraensis isolated from Rajkot, India. Biotechnol Reports 1–2:2–7. https://doi.org/10.1016/j.btre.2014.05.003
Sanjenbam P, Kannabiran K (2016) Bioactivity of Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-
3-(phenylmethyl)-Extracted from Streptomyces sp. VITPK9 Isolated from the Salt Spring Habitat of Manipur, India. Asian Journal of Pharmaceutics. 10: 4-12. http://dx.doi.org/10.22377/ajp.v10i04.865. Schöller CEG, Gürtler H, Pedersen R, et al (2002) Volatile metabolites from actinomycetes. J Agric Food Chem 50:2615–2621. https://doi.org/10.1021/jf0116754
Selvakumar J, Chandrasekaran S, Vaithilingam M (2015) Bio prospecting of marine-derived Streptomyces spectabilis VITJS10 and exploring its cytotoxicity against human liver cancer cell lines. Pharmacogn Mag 11:469. https://doi.org/10.4103/0973-1296.168974
Ser HL, Mutalib NSA, Yin WF, et al (2015a) Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia. Front Microbiol 6:. https://doi.org/10.3389/fmicb.2015.01398
Ser HL, Palanisamy UD, Yin WF, et al (2015b) Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol 6:854. https://doi.org/10.3389/fmicb.2015.00854
Shetty PR, Buddana SK, Tatipamula VB, et al (2014) Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity. Brazilian J Microbiol 45:303–312. https://doi.org/10.1590/S1517-83822014005000022
Shomura T, Yoshida J, Amano S, et al (1979) Studies on Actinomycetales producing antibiotics only on agar culture. I. Screening, taxonomy and morphology-productivity relationship of Streptomyces halstedii, strain SF-1993. J Antibiot (Tokyo) 32:427–435. https://doi.org/10.7164/antibiotics.32.427
Subramani, Sipkema (2019) Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar Drugs 17:249. https://doi.org/10.3390/md17050249
Takahashi Y, Nakashima T (2018) Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics 7:45
Tan HM, Cao LX, He ZF, et al (2006) Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J Microbiol Biotechnol 22:1275–1280. https://doi.org/10.1007/s11274-006-9172-y
Tan LTH, Chan KG, Pusparajah P, et al (2019) Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol 19:38. https://doi.org/10.1186/s12866-019-1409-7
Tilburn J, Sarkar S, Widdick DA, et al (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790. https://doi.org/10.1002/j.1460-2075.1995.tb07056.x
Tudzynski B, Homann V, Feng B, Marzluf GA (1999) Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol Gen Genet 261:106–114. https://doi.org/10.1007/s004380050947
Wang C, Wang Z, Qiao X, et al (2013) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341:45–51. https://doi.org/10.1111/1574-6968.12088
Wang X, Huang L, Kang Z, et al (2010) Optimization of the fermentation process of actinomycete strain Hhs.015(T). J Biomed Biotechnol 2010:. https://doi.org/10.1155/2010/141876
Williams ST, Goodfellow M, Wellington EMH, et al (1983) A probability matrix for identification of some streptomycetes. J Gen Microbiol 129:1815–1830. https://doi.org/10.1099/00221287-129-6-1815
Yagüe P, Lopez-Garcia MT, Rioseras B, et al (2012) New insights on the development of Streptomyces and their relationships with secondary metabolite production. Curr trends Microbiol 8:65–73
Yan LL, Han NN, Zhang YQ, et al (2010) Antimycin A 18 produced by an endophytic Streptomyces albidoflavus isolated from a mangrove plant. J Antibiot (Tokyo) 63:259–261. https://doi.org/10.1038/ja.2010.21
(2019) WHO | No Time to Wait: Securing the future from drug-resistant infections. WHO
Bergey, D.H. and Holt, J.G. (1994) Bergey’s Manual of Determinative Bacteriology. 9th Edition, Williams & Wilkins, Baltimore, Maryland. - References - Scientific Research Publishing. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2024734. Accessed 17 Feb 2020