[1] Ramalingam D, Sharma V, Zar P. Study of Depression Analysis using Machine Learning Techniques. International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075,Volume-8, Issue-7C2, May 2019
[2] Stolar MN, Lech M, Stolar SJ, Allen NB. Detection of adolescent depression from speech using optimised spectral roll-off parameters. Biomedical Journal. 2018;2:10.
[3] Soundariya R S, Nivaashini M, Tharsanee R M, Thangaraj P. Application of Various Machine Learning Techniques in Sentiment Analysis for Depression Detection. International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8, Issue-10S, August 2019.
[4] Tsugawa S, Kikuchi Y, Kishino F, Nakajima K, Itoh Y, Ohsaki H. Recognizing depression from twitter activity. In Proceedings of the 33rd annual ACM conference on human factors in computing systems 2015 Apr 18 (pp. 3187-3196).
[5] Haque A, Guo M, Miner AS, Fei-Fei L. Measuring depression symptom severity from spoken language and 3D facial expressions. arXiv preprint arXiv:1811.08592. 2018 Nov 21.
[6] Aldarwish MM, Ahmad HF. Predicting depression levels using social media posts. In2017 IEEE 13th international Symposium on Autonomous decentralized system (ISADS) 2017 Mar 22 (pp. 277-280). IEEE.
[7] De Choudhury M, Gamon M, Counts S, Horvitz E. Predicting depression via social media. In Proceedings of the 7th International AAAI Conference on Social Media and Weblogs (ICWSM’13) (July 2013).
[8] Shetty NP, Muniyal B, Anand A, Kumar S, Prabhu S. Predicting depression using deep learning and ensemble algorithms on raw twitter data. International Journal of Electrical & Computer Engineering (2088-8708). 2020 Aug 1;10.
[9] Cao L, Guo S, Xue Z, Hu Y, Liu H, Mwansisya TE, Pu W, Yang B, Liu C, Feng J, Chen EY. Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis. Psychiatry and clinical neurosciences. 2014 Feb;68(2):110-9.
[10] Liao SC, Wu CT, Huang HC, Cheng WT, Liu YH. Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns. Sensors. 2017 Jun;17(6):1385.
[11] World Health Organization (WHO) (2017). Depression. Fact sheet. Available online at: http://www.who.int/mediacentre/factsheets/fs369/en/