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Synchronization of Two Symmetric Bones of the Human Body for Control of Bone 

Cancer 

Abstract—The human body has symmetric bones. This paper uses control engineering concepts to design a 
suitable controller to synchronize two symmetric bones of the human body to control and treat bone cancer. 
A Nonsingular Terminal Sliding Mode Control (NTSMC) method will be employed to design the proposed 
control inputs. The control inputs can be the chemical drugs that can be used to treat bone cancer. The 
dynamical equations of bone cancer will be used to apply the designed control method and test it. For testing 
the designed controller, Simulink/MATLAB software will be used. The proposed controller is chattering-free, 
robust against uncertainties and external disturbances, and finite-time stable in the control engineering view. 
Bone cancer will be treated for almost one year using the proposed control method. 

Keywords: Bone cancer, synchronization, finite-time stability, biomedical engineering. 

1. INTRODUCTION 

The human bones are composed of two types of cells; Osteoblast (OB) and Osteoclast (OC). This collection is called Basic 
Multicellular Unit (BMU) [1, 2]. Bone diseases are diverse, that one of them is bone cancer. Bone cancer happens when the growth 
rate order of the bone cells (OB or OC) is disrupted, which grows up cancer cells (CCs) [1-3]. Osteosarcoma (OS) is a type of bone 
disease. When the OS happens in the bone, the discipline of the growth of the bone cells disorganizes. OS is more likely to happen 
at 13-16 years old and after 55 years old. This sickness more occurs in boy children [3, 4]. OB cells are responsible for the 
remodeling of bone, and OC cells are for bone growth. If the order of growth and reproduction of these cells is lost, OB cells will 
grow more and cause CCs [5, 6]. In the healthy bone (bone without cancer), OB and OC cells multiply clearly and periodically. 
However, in sick bone (cancerous bone), there is no systematic growth and reproduction [1]. 

Bones skeleton the skeleton of the human body, and almost all of them are symmetrical. If one of the human bones becomes 
cancerous, the closest value of the parameters is its symmetric bone. Therefore, symmetric bone parameters can be used for the 
reconstruction and treatment of cancerous bone. This fact can be used to model, design, and control cancerous bones. This concept 
in control engineering is called “synchronization.” In the synchronization problem, the variables and parameters of the “slave” 
system will be the same as the variables and parameters of the “master” system [7, 8]. In the synchronization of two human bones, 
the cancerous bone (slave) will be the same as the healthy bone (master). For synchronization, the systems need to apply control 
inputs to the system. These control inputs in the synchronization of the human bones can be considered as the effect of the dose of 
the chemical drugs. Recently, many control efforts have been made using the synchronization concept in different fields, such as 
synchronizing the communication systems [9, 10], chaotic systems [11, 12], and chemical systems [13, 14]. 

The Nonsingular Terminal Sliding Mode Control (NTSMC) method is a robust finite-time control strategy that guarantees that the 
system states reach zero at a finite time. This method is presented in some studies, such as references [15, 16]. It is used for 
controlling some practical systems such as manipulator robots [17], perturbed nonlinear systems [18], DC-DC buck converters [19], 
Quadrotor unmanned aerial vehicles [20], underactuated underwater robots [21], acute Leukemia therapy [22]. Recently using the 
control engineering methods are increased for biomedical applications such as drug delivery in cancerous tumors [23], tumor 
treatment immunity [24], cancer chemotherapy [25], control the tumor growth [26], angiogenic inhibition therapy [27]. 

One of the challenges in the designed controller by NTSMC is the chattering phenomenon. The chattering phenomenon is because 
of the high-frequency switching gain in the controller. Chattering is a very harmful phenomenon in control applications. It can 
reduce the actuators' age and add unwanted noise to the system. In biomedical applications, especially cancer treatment, the 
chattering causes to control inputs will be uncreatable. It means that the chattered control inputs cannot be created in the practical 
tests. Some types of control methods are developed to remove, eliminate or reduce the chattering from the control input signals [28-
31].  

This paper proposes three control signals to synchronize two symmetrical human bones to control bone cancer. It is assumed that 
one of the human bones (arm or leg bones) is cancerous with cancer, and it will be treated by applying the proposed control inputs, 
which are the effect of the chemical drugs. The proposed control inputs will be designed by the NTSMC control method. The control 
inputs are designed using the chattering-free concepts. 

2. MATHEMATICS 

Definition 1. Function 𝑠𝑖𝑔𝑎(𝑥) with the relation between absolute function |𝑥| and symbol-function for 𝑠𝑖𝑔𝑎(𝑥) = |𝑥|𝑎𝑠𝑖𝑔𝑛(𝑥) is 
defined. Function 𝑠𝑖𝑔𝑛(𝑥) is defined as follows [30]: 

https://www.sciencedirect.com/science/article/pii/S1746809421007187


𝑠𝑖𝑔𝑛(𝑥) = {1              ;  𝑥 > 00              ;  𝑥 = 0−1           ;  𝑥 < 0                                      (1) 

Definition 2. The relation between absolute and signum function is as |𝑥| = 𝑥𝑠𝑖𝑔𝑛(𝑥) [30]. 

Lemma 1. For a nonlinear system 𝑥̇ = 𝑓(𝑥), 𝑓(0) = 0, 𝑥 ∈ 𝐷 ⊆ ℜ𝑛 , 𝑥(0) = 𝑥0 by assuming the constants   𝜌1  to  𝜌4 as 𝜌1 > 0, 𝜌2 >0, 𝜌3 > 1, 𝜌4 = 1 − 12𝜌3 , 𝜌5 = 1 + 12𝜌3  and Lyapunov function 𝑉(𝑥): ℜ𝑛 → ℜ+  ∪ {0}, as a scalar continuous radially unbounded 

function therefore if 𝑉̇(𝑥) ≤ −𝜌1𝑉𝜌4(𝑥) − 𝜌2𝑉𝜌5(𝑥) so the equilibrium 𝑥 = 0 of this system will be globally finite-time stable, 
and state variables of this system converge from each initial condition to zero, and the upper bound of its settling time is for 𝑇 ≤𝜋𝜌3(√𝜌1𝜌2)−1

 [7]. 

Lemma 2. Considering scalars 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℜ and choosing 0 < 𝑞 < 2 then will have |𝑎1|𝑞 + |𝑎2|𝑞 + ⋯ +  |𝑎𝑛|𝑞 ≥(𝑎12 + 𝑎22 + ⋯ + 𝑎𝑛2)𝑞2 [32]. 

3. EXPLANATION OF THE PURPOSE  

This paper aims to synchronize the OBs and OCs cells of the cancerous bone to OBs and OCs cells of the symmetrical healthy bone 
and destroy the CCs. The model of bone OBs, OCs cells, and CCs for cancerous and healthy bones are the same, and only the 
parameters values are different [1]. The provided bone model and the values of its parameters for healthy and cancerous bone are 
published in [1, 2, 33] for Mixed Lesion and Osteolytic Lesion diseases. These are the most common cancerous bone diseases. This 
model is called the Komarova model, which is presented in Eq. (2). 

{𝑢̇ = 𝛼1𝑢𝑣𝛾1 − 𝛽1𝑢 + 𝜎1𝑢𝜔                                    𝑣̇ = 𝛼2𝑣𝑢𝛾2 − 𝛽2𝑣 + 𝜎2𝑣𝜔                                    𝜔̇ = 𝛼3 (1 − 𝜔𝐾) 𝜔 + (𝜎3𝑢𝛾2 + 𝜎4𝑣𝛾1)𝜔 − 𝛽3𝜔                  (2) 

where 𝑢, 𝑣 and 𝜔 are the density of OC, OB and CC cells, respectively. 𝛼𝑖 , 𝛽𝑖 , 𝑖 = (1,2,3) multiplication rate of OC, OB and CCs 
and are fixed parameters and positive. 𝜎𝑗 , 𝑗 = (1,2,3,4) coefficients constant for the relationship between OC, OB and CCs that 𝜎1, 𝜎3 are positive and 𝜎2, 𝜎4 are negative or positive. 𝛾1, 𝛾2 are the rate of signaling between OBs and OCs that are coefficient and 𝛾1 < 0, 𝛾2 > 0 and 𝐾 is the ability to carry CCs. As well as the model of bone mass is as follows [2]: 𝑧̇ = −𝑘1√max{𝑢 − 𝑢̅, 0} + 𝑘2√max {𝑣 − 𝑣̅, 0}                           (3) 

where 𝑧 is the bone mass and 𝑘1, 𝑘2 are normalized activities of bone formation that are constant and positive. 𝑣̅, 𝑢̅ are steady-state 
of the OB and OC cells that are presented as follows: 

𝑢̅ = (𝛽2𝛼2) 1𝛾2
𝑣̅ = (𝛽1𝛼1) 1𝛾1                             (4) 

For healthy bone, the values of parameters are presented as follows: 𝛼1𝑚 = 0.3, 𝛼2𝑚 = 0.1, 𝛽1𝑚 = 0.2, 𝛽2𝑚 = 0.02, 𝛾1𝑚 = −0.3, 𝛾2𝑚 = 0.5, 𝑘1𝑚 = 0.07, 𝑘2𝑚 = 0.0022, 𝛼3𝑚 = 0.045, 𝛽3𝑚 =0.05, 𝜎1𝑚 = 0.001, 𝜎2𝑚 = −0.00005, 𝜎3𝑚 = 0.005, 𝜎4𝑚 = 0, 𝐾𝑚 = 300                (5) 

In addition, for the Fixed Lesion disease, these parameters have values as follows: 𝛼1𝑠 = 0.3, 𝛼2𝑠 = 0.1, 𝛽1𝑠 = 0.2, 𝛽2𝑠 = 0.02, 𝛾1𝑠 = −0.3, 𝛾2𝑠 = 0.5, 𝑘1𝑠 = 0.023, 𝑘2𝑠 = 0.0023, 𝛼3𝑠 = 0.055, 𝛽3𝑠 = 0.05, 𝜎1𝑠 =0.001, 𝜎2𝑠 = −0.005, 𝜎3𝑠 = 0.001, 𝜎4𝑠 = 0, 𝐾𝑠 = 3                   (6) 

For the synchronization of two healthy and cancerous bones, the synchronization errors are defined as 𝑒1 = 𝑢𝑠 − 𝑢𝑚, 𝑒2 = 𝑣𝑠 −𝑣𝑚, 𝑒3 = 𝜔𝑠 − 𝜔𝑚 where 𝑚 is the abbreviation of the master system (healthy bone), also 𝑠 is the abbreviation of slave system 
(cancerous bone). This paper aims to reach these errors to zero at a finite time. 

The error dynamic will be as follows: 



{𝑒1̇ = 𝑓1𝑠 − 𝑓1𝑚 + 𝐷1 + 𝑈1𝑒2̇ = 𝑓2𝑠 − 𝑓2𝑚 + 𝐷2 + 𝑈2𝑒3̇ = 𝑓3𝑠 − 𝑓3𝑚 + 𝐷3 + 𝑈3                                   (7) 

where 

{𝑓1𝑚 = 𝛼1𝑚𝑢𝑚𝑣𝑚𝛾1𝑚 − 𝛽1𝑚𝑢𝑚 + 𝜎1𝑚𝑢𝑚 𝜔𝑚                                          𝑓2𝑚 = 𝛼2𝑚𝑣𝑚𝑢𝑚𝛾2𝑚 − 𝛽2𝑚𝑣𝑚 + 𝜎2𝑚𝑣𝑚𝜔𝑚                                           𝑓3𝑚 = 𝛼3𝑚 (1 − 𝜔𝑚𝐾𝑚 ) 𝜔𝑚 + (𝜎3𝑚𝑢𝑚𝛾2𝑚 + 𝜎4𝑚𝑣𝑚𝛾1𝑚 )𝜔𝑚 − 𝛽3𝑚𝜔𝑚             (8) 

and 

{𝑓1𝑠 = 𝛼1𝑠𝑢𝑠𝑣𝑠𝛾1𝑠 − 𝛽1𝑠𝑢𝑠 + 𝜎1𝑠𝑢𝑠𝜔𝑠                                      𝑓2𝑠 = 𝛼2𝑠𝑣𝑠𝑢𝑠𝛾2𝑠 − 𝛽2𝑠𝑣𝑠 + 𝜎2𝑠𝑣𝑠𝜔𝑠                                       𝑓3𝑠 = 𝛼3𝑠 (1 − 𝜔𝑠𝐾𝑠) 𝜔𝑠 + (𝜎3𝑠𝑢𝑠𝛾2𝑠 + 𝜎4𝑠𝑣𝑠𝛾1𝑠)𝜔𝑠 − 𝛽3𝑠𝜔𝑠            (9) 

𝑈𝑖 , 𝑖 = (1,2,3) are the models of the control inputs that will be designed in the next section and 𝐷𝑖  are the models of unknowns and 
uncertainties. Assuming that the upper bounds for 𝐷𝑖  are available as follows: |𝐷𝑖| ≤ 𝜂𝑖1|𝐷̇𝑖| ≤ 𝜂𝑖2                                  (10) 

4. DESIGNING THE CONTROL INPUTS 

Designing the controller using the NTSMC method consists of two parts. The first part is designing the sliding surfaces and proof 
of their stability, and the second part is proof of reaching the sliding surface. Since this paper aims for finite-time stability, must 
both these parts prove at a finite time to ensure the finite-time stability. 

Teorem 1: Consider system Eq. (7), defined sliding surfaces Eq. (11), and control inputs Eq. (12). So the states of this system reach 
zero in a finite time. 

{ 𝑠1 = 𝑒̇1 + 𝑐11𝑠𝑖𝑔𝛼11(𝑒1) + 𝑐12𝑠𝑖𝑔𝛼12(𝑒1)𝑠2 = 𝑒̇2 + 𝑐21𝑠𝑖𝑔𝛼21(𝑒2) + 𝑐22𝑠𝑖𝑔𝛼22(𝑒2)𝑠3 = 𝑒̇3 + 𝑐31𝑠𝑖𝑔𝛼31(𝑒3) + 𝑐32𝑠𝑖𝑔𝛼32(𝑒3)                        (11) 

where 𝑐𝑖1, 𝑐𝑖2 are positive control parameters and 𝛼𝑖1, 𝛼𝑖2 are positive constants as {𝛼𝑖1 = 𝑁   𝛼𝑖2 = 𝑁2−𝑁  and 𝑁 ∈ (0,1). 

{𝑈𝑖 = 𝑈𝑒𝑞𝑖 + 𝑈𝑟𝑖                                                                     𝑈𝑒𝑞𝑖 = 𝑓𝑖𝑚 − 𝑓𝑖𝑠 − 𝑐𝑖1𝑠𝑖𝑔𝛼𝑖1(𝑒𝑖) − 𝑐𝑖2𝑠𝑖𝑔𝛼𝑖2(𝑒𝑖)         𝑈̇𝑟𝑖 =  −𝑘𝑖1𝑠𝑖𝑔𝛽𝑖1(𝑠𝑖) − 𝑘𝑖2𝑠𝑖𝑔𝛽𝑖2(𝑠𝑖) − 𝜂𝑖2𝑠𝑖𝑔𝑛(𝑠𝑖)          (12) 

In these control inputs 𝑘𝑖1, 𝑘𝑖2 are positive constants and 𝛽𝑖1, 𝛽𝑖2 are positive and smaller than one constant. 

Proof: In [34] it has been shown that sliding surfaces Eq. (11) have finite-time stability, provided that 𝑐𝑖1, 𝑐𝑖2 are chosen so 
polynomial of 𝑝2 + 𝑐𝑖2𝑝 + 𝑐𝑖1 = 0 is Hurwitz. For prooving the reaching phase (second part), consider the Lyapunov function 𝑉 =∑ 12 𝑠𝑖3𝑖=1  which has conditions of the Lyapunov function of Lemma 1. Then will have 𝑉̇ = ∑ 𝑠𝑖𝑠̇𝑖3𝑖=1  and with applying the control 

inputs to the system also putting up 𝑠̇𝑖 in 𝑉̇ so can be written 𝑉̇ = ∑ 𝑠𝑖(𝑈̇𝑟𝑖 + 𝐷̇𝑖)3𝑖=1  as follows: 𝑉̇ = ∑ 𝑠𝑖(−𝑘𝑖1𝑠𝑖𝑔𝛽𝑖1(𝑠𝑖) − 𝑘𝑖2𝑠𝑖𝑔𝛽𝑖2(𝑠𝑖) − 𝜂𝑖2𝑠𝑖𝑔𝑛(𝑠𝑖) + 𝐷̇𝑖)3𝑖=1                                        (13) 

by simplifying: 𝑉̇ = ∑ −𝑘𝑖1|𝑠𝑖|1+𝛽𝑖1 − 𝑘𝑖2|𝑠𝑖|1+𝛽𝑖2 − 𝜂𝑖2|𝑠𝑖| + 𝐷̇𝑖𝑠𝑖3𝑖=1                                                       (14) 



since the 𝐷̇𝑖𝑠𝑖 ≤ |𝐷̇𝑖||𝑠𝑖| also |𝐷𝑖̇ | ≤ 𝜂𝑖2 so: 𝑉̇ ≤ ∑ −𝑘𝑖1|𝑠𝑖|1+𝛽𝑖1 − 𝑘𝑖2|𝑠𝑖|1+𝛽𝑖23𝑖=1                                         (15) 

due to the Lemma 2: 

𝑉̇(𝑥) ≤  ∑ −(√2)𝛽𝑖1+1𝑘𝑖1 𝑠𝑖 𝛽𝑖1+12 − (√2)𝛽𝑖2+1𝑘𝑖2𝑠𝑖𝛽𝑖2+123𝑖=1                          (16) 

with the selection of parameters values as follows: 𝑟1 = (√2)𝛽𝑖1+1𝑘𝑖1 > 0, 𝑟2 = (√2)𝛽𝑖2+1𝑘𝑖2 > 0, 𝑟4 = 𝛽𝑖1 = 1 − 1𝑟3 , 𝑟5 = 𝛽𝑖2 = 1 + 1𝑟3                        (17) 

where 𝑟3 > 1: 𝑉̇(𝑥) ≤  −𝑟1𝑉𝑟4 − 𝑟2𝑉𝑟5                              (18) 

due to the Lemma 1, the system Eq. (2) is stable for a finite time, and the settling time is 𝑇 ≤ 𝜋𝑟3(√(𝑟1𝑟2))−1
. Theorem 1 is proved. ∎ 

5. SIMULATION 

The aim of this paper was that OB and OC cells of cancerous bone track the OB and OC cells of healthy bone as well as eliminate 
the CCs of the cancerous bone. The simulation was conducted in MATLAB software. The control parameters are selected as 
follows:  𝑐𝑖1 = 0.02, 𝑐𝑖2 = 0.0001, 𝑘𝑖1 = 0.01, 𝑘𝑖2 = 0.01, 𝑁 = 0.9, 𝑟3 = 0.5            (19) 

 

Figure 1. The curves of the OC cells of cancerous and healthy bone 



 

Figure 2. The curves of the OB cells of cancerous and healthy bone 

 

Figure 3. The curves of the CCs of cancerous bone 

 

Figure 4. The curves of the control inputs 



 

Figure 5. The curve of the OB cells of cancerous and healthy bone in 30 days 

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous bones. Figure 3 shows the 
curve of the CCs for cancerous bone. As well as, Figure 4 illustrates the curves of the designed control inputs. In this simulation, 
the initial conditions of healthy bone are (𝑢0, 𝑣0, 𝜔0) = (10, 5, 1). Since when the cancerousness happens, the distances of the OC 
and CCs cells are more than a healthy bone, and the distance of the OB cells is less than, so the initial conditions of cancerous bone 
are selected as (𝑢0, 𝑣0, 𝜔0) = (40, 1, 5). 

Discussion: As the figures are precise, after about 300 days (almost one year), the OC cells of cancerous bone have tracked the OC 
cells of healthy bone until the CCs have disappeared. In the OB cells, because initial conditions of cancerous bone and healthy bone 
are close and the amplitude of the figure is big, the result is not clear correctly. Figure 5 shows the curve of the OB cells in 30 days 
(zoomed in). The period of OS treatment is almost five years in the real world. It is the reason for selecting the final time of the 
simulation as 2000 days. The control inputs are smooth. They are possible to implement in real tests. The smoothness is happened 
because of the chattering-free design. 

6. CONCLUSION 

In this paper, the NTSMC control method is employed to synchronize two human body bones. One of these bones was cancerous 
bone, and the other bone was healthy. This paper was a theoretical study that controlled and treated bone cancer with a theoretical 
method. Three designed control inputs have the features of chattering-free, finite-time stability and robustness against unknowns 
and uncertainties, which can be used in practical tests. These control inputs can be the effects of doses of medicines or the power 
of X-rays. After about a year, it was shown that the CCs had disappeared, and the cancerous bone looked like its symmetrical 
healthy bone. For the subsequent studies, it is suggested to work on implementing these types of studies in real tests for the treatment 
of some animals' bone cancer. 
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