1 Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine (2020).
2 WHO. Novel Coronavirus-China. https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/. Accessed 1 Feb 2020. (2020).
3 Weiss, S. R. & Leibowitz, J. L. in Advances in virus research Vol. 81 85-164 (Elsevier, 2011).
4 Su, S. et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in microbiology 24, 490-502 (2016).
5 Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England journal of medicine 348, 1967-1976 (2003).
6 Zhong, N. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. The Lancet 362, 1353-1358 (2003).
7 Zaki, A. M., Van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine 367, 1814-1820 (2012).
8 Kampf, G., Todt, D., Pfaender, S. & Steinmann, E. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. Journal of Hospital Infection (2020).
9 Chappell, M. C., Pirro, N. T., Sykes, A. & Ferrario, C. M. Metabolism of angiotensin-(1–7) by angiotensin-converting enzyme. Hypertension 31, 362-367 (1998).
10 Keidar, S., Kaplan, M. & Gamliel-Lazarovich, A. ACE2 of the heart: from angiotensin I to angiotensin (1–7). Cardiovascular research 73, 463-469 (2007).
11 Epelman, S. et al. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. Journal of the American College of Cardiology 52, 750-754 (2008).
12 Kemp, B. A. et al. AT2 receptor activation prevents sodium retention and reduces blood pressure in angiotensin II–dependent hypertension. Circulation research 119, 532-543 (2016).
13 De Jongh, R., De Backer, W., Mohan, R., Jorens, P. & van Overveld, F. Angiotensin-converting enzyme activity in serum and bronchoalveolar lavage fluid after damage to the alveolo-capillary barrier in the human lung. Intensive care medicine 19, 390-394 (1993).
14 Warner, F. J. et al. Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. Journal of Biological Chemistry 280, 39353-39362 (2005).
15 Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448 (2020).
16 Peng, C. et al. Exploring the Binding Mechanism and Accessible Angle of SARS-CoV-2 Spike and ACE2 by Molecular Dynamics Simulation and Free Energy Calculation. Preprint. https://doi. org/10.26434/chemrxiv 11877492, v1 (2020).
17 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263 (2020).
18 Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell (2020).
19 Kuba, K. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature medicine 11, 875-879 (2005).
20 Gordon, D. E. et al. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. BioRxiv (2020).
21 Chen, L., Xiong, J., Bao, L. & Shi, Y. Convalescent plasma as a potential therapy for COVID-19. The Lancet Infectious Diseases (2020).
22 Aguiar, A. C. et al. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. International Journal for Parasitology: Drugs and Drug Resistance 8, 459-464 (2018).
23 Savarino, A., Boelaert, J. R., Cassone, A., Majori, G. & Cauda, R. Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet infectious diseases 3, 722-727 (2003).
24 Vincent, M. J. et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal 2, 69 (2005).
25 Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research 30, 269-271 (2020).
26 Holshue, M. L. et al. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine (2020).
27 Agostini, M. L. et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 9, e00221-00218 (2018).
28 Rehman, S., Ashfaq, U. A., Riaz, S., Javed, T. & Riazuddin, S. Antiviral activity of Acacia nilotica against Hepatitis C Virus in liver infected cells. Virology journal 8, 220 (2011).
29 Chinsembu, K. C. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Revista Brasileira de Farmacognosia (2019).
30 Umar, S. et al. Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. J. Saudi Soc. agric. Sci (2016).
31 Bouslama, L., Kouidhi, B., Alqurashi, Y. M., Chaieb, K. & Papetti, A. Virucidal Effect of Guggulsterone Isolated from Commiphora gileadensis. Planta medica 85, 1225-1232 (2019).
32 Al-Bagieh, N. Antiherpes simplex virus type 1 activity of benzylisothiocyanate. Biomedical letters 47, 67-70 (1992).
33 Benzekri, R. et al. Anti HSV-2 activity of Peganum harmala (L.) and isolation of the active compound. Microbial pathogenesis 114, 291-298 (2018).
34 Li, S.-y. et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral research 67, 18-23 (2005).
35 Tragoolpua, Y. & Jatisatienr, A. Anti‐herpes simplex virus activities of Eugenia caryophyllus (Spreng.) Bullock & SG Harrison and essential oil, eugenol. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 21, 1153-1158 (2007).
36 Chen, F. et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology 31, 69-75, doi:https://doi.org/10.1016/j.jcv.2004.03.003 (2004).
37 Yang, Y., Xiu, J., Zhang, L., Qin, C. & Liu, J. Antiviral activity of punicalagin toward human enterovirus 71 in vitro and in vivo. Phytomedicine 20, 67-70 (2012).
38 Li, Z. et al. Natural Sulforaphane From Broccoli Seeds Against Influenza A Virus Replication in MDCK Cells. Natural Product Communications 14, 1934578X19858221 (2019).
39 Elizondo-Gonzalez, R. et al. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virology journal 9, 307 (2012).
40 Wang, Z. et al. Discovery and SAR Research for Antivirus Activity of Novel Butenolide on Influenza A Virus H1N1 In Vitro and In Vivo. ACS omega 4, 13265-13269 (2019).
41 Shahzad, A. & Cohrs, R. J. In vitro antiviral activity of honey against varicella zoster virus (VZV): a translational medicine study for potential remedy for shingles. Translational biomedicine 3 (2012).
42 Watanabe, K., Rahmasari, R., Matsunaga, A., Haruyama, T. & Kobayashi, N. Anti-influenza viral effects of honey in vitro: potent high activity of manuka honey. Archives of medical research 45, 359-365 (2014).
43 Berman, H. M. et al. The protein data bank. Acta Crystallographica Section D: Biological Crystallography 58, 899-907 (2002).
44 Kim, S. et al. PubChem substance and compound databases. Nucleic acids research 44, D1202-D1213 (2016).
45 Yusuf, D., Davis, A. M., Kleywegt, G. J. & Schmitt, S. An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of chemical information and modeling 48, 1411-1422 (2008).
46 Neira, J. L. et al. Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Scientific reports 7, 1-15 (2017).
47 Rashid, M. Design, Synthesis and ADMET prediction of Bis-benzimidazole as Anticancer agent. Bioorganic Chemistry, 103576 (2020).
48 Makhaeva, G. F. et al. Synthesis, molecular docking, and biological evaluation of 3-oxo-2-tolylhydrazinylidene-4, 4, 4-trifluorobutanoates bearing higher and natural alcohol moieties as new selective carboxylesterase inhibitors. Bioorganic chemistry 91, 103097 (2019).
49 Arora, R., Issar, U. & Kakkar, R. Identification of novel urease inhibitors: pharmacophore modeling, virtual screening and molecular docking studies. Journal of Biomolecular Structure and Dynamics 37, 4312-4326 (2019).
50 Yan, R. et al. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science (2020).
51 Ding, Y. et al. Assessing the similarity of ligand binding conformations with the contact mode score. Computational biology and chemistry 64, 403-413 (2016).
52 Cinatl, J. et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet 361, 2045-2046 (2003).
53 Wang, L., Yang, R., Yuan, B., Liu, Y. & Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharmaceutica Sinica B 5, 310-315 (2015).
54 Zhang, L. & Zhou, R. Binding Mechanism of Remdesivir to SARS-CoV-2 RNA Dependent RNA Polymerase. (2020).
55 Nerome, K. et al. Functional growth inhibition of influenza A and B viruses by liquid and powder components of leaves from the subtropical plant Melia azedarach L. Archives of virology 163, 2099-2109 (2018).
56 Yang, Y., Islam, M. S., Wang, J., Li, Y. & Chen, X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int J Biol Sci 16, 1708-1717 (2020).
57 Ju, J. et al. Nucleotide Analogues as Inhibitors of SARS-CoV Polymerase. bioRxiv (2020).
58 Elfiky, A. A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life sciences, 117477 (2020).
59 Senathilake, K., Samarakoon, S. & Tennekoon, K. Virtual Screening of Inhibitors Against Spike Glycoprotein of 2019 Novel Corona Virus: A Drug Repurposing Approach. (2020).
60 Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell (2020).
61 Perico, L., Benigni, A. & Remuzzi, G. Should COVID-19 Concern Nephrologists? Why and to What Extent? The Emerging Impasse of Angiotensin Blockade. Nephron, 1-9 (2020).
62 Jamal, S. et al. Molecular Analyses of Over Hundred Sixty Clinical Isolates of SARS-CoV-2: Insights on Likely Origin, Evolution and Spread, and Possible Intervention. (2020).
63 Zhang, X. et al. Absorption and metabolism characteristics of rutin in Caco-2 cells. The Scientific World Journal 2013 (2013).
64 Andlauer, W., Stumpf, C. & Furst, P. Intestinal absorption of rutin in free and conjugated forms. Biochemical pharmacology 62, 369-374, doi:10.1016/s0006-2952(01)00638-4 (2001).
65 Smith, Q. R., Fisher, C. & Allen, D. D. in Blood—Brain Barrier 311-321 (Springer, 2001).
66 Ashour, M. L., Youssef, F. S., Gad, H. A. & Wink, M. Inhibition of cytochrome P450 (CYP3A4) activity by extracts from 57 plants used in traditional chinese medicine (TCM). Pharmacognosy magazine 13, 300 (2017).
67 Pang, X. et al. Screening of cytochrome P450 3A4 inhibitors via in silico and in vitro approaches. RSC advances 8, 34783-34792 (2018).