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Abstract: New challenges have arisen in the field of wireless communication systems since the ad-
vent of Fifth Generation (5G) networks and the main objectives of delivering higher data rates, ultra-
low latency, more reliability, and massive network capacity. While massive multiple-input multiple-
output (MIMO) systems have emerged as a key technology for delivering a more uniform user ex-
perience to multiple users simultaneously, the deployment of multiple radiated elements in a con-
fined area can lead to interference between the transmitted and received signals, resulting in the 

degradation of system efficiency. Therefore, interference management techniques are essential to 
mitigate this impact and enhance system performance. This review aims to explore interference 
management techniques in massive MIMO systems, including beamforming methods, non-orthog-
onal multiple access (NOMA), and joint transmission coordinated multi-point (JT-CoMP). The ob-
jective is to analyze the performance of these techniques in terms of the network capacity, coverage, 

and reliability and to compare their effectiveness in reducing interference. The valuable insights 
gained from this investigation will serve to inform the design and optimization of these systems. 

Keywords: Index terms–massive MIMO; 5G networks; NOMA; JT-CoMP; wireless 

communications 

1. Introduction

The rapid evolution of mobile communication networks has led to the development 
of the fifth generation of mobile networks. 5G NR (New Radio) is a new radio access tech-
nology developed by the 3rd Generation Partnership Project (3GPP) for the fifth-genera-
tion mobile networks, designed to be the global standard for the air interface powered by 

the New Radio technology to create wireless connectivity between the mobile equipment 
and the 5G network. New Radio was originally specified in 3GPP release 15 and is based 

on the same Orthogonal Frequency Division Multiplexing (OFDM) transmission scheme 
as the 4G LTE networks [1]. At its core, 5G utilizes a combination of various key technol-
ogies to deliver its transformative capabilities. One of the fundamental technologies is the 

use of higher frequency bands, including millimeter waves, providing a wider spectrum 
for data transmission and higher multi-Gbps peak data speeds [2,3]. These higher fre-
quency bands enable faster data rates and increased availability, addressing the ever-
growing demand for bandwidth-intensive applications and services, thereby supporting 

the massive Internet of Things (IoT) ecosystem and ensuring seamless connectivity in 
densely populated areas. 
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Figure 1. Enhancements of key performance requirements from IMT-Advanced to IMT-2020. 

In addition to the key performance indicators mentioned in Figure 1, another im-
portant aspect of 5G is the utilization of advanced antenna technology known as massive 

MIMO. Massive MIMO involves the deployment of large arrays of antennas at both the 
base stations (gNodeB) and user terminals to improve spectral efficiency, energy effi-
ciency, and reliability in wireless communications. However, massive MIMO systems also 
face several challenges, such as interference management, channel estimation, beamform-
ing design, hardware complexity, and power consumption. Interference management is 

one of the most critical issues in massive MIMO systems, as it affects the performance and 
quality of service (QoS) of the users. Interference can arise from various sources, such as 
co-channel users, adjacent cells, non-orthogonal signals, and hardware impairments. 
Therefore, it is important to develop effective techniques to mitigate interference and im-
prove the signal-to-interference-plus-noise ratio (SINR) of the desired users. This study 

examines three key techniques, such as beamforming, NOMA, and JT-CoMP. Each of 
these techniques offers a unique approach to mitigating interference and enhancing sys-
tems’ overall performance. 

2. Research Methodology

Our research adopts a systematic literature review approach to comprehensively 
overview the existing literature on interference management, massive MIMO systems, 

and 5G networks. This approach facilitates the identification, selection, and analysis of 
relevant studies to address targeted research inquiries. These inquiries encompass the or-
igins of interference, principal interference management methodologies utilized within 

massive MIMO systems—especially in the context of the 5G NR—the effects of interfer-
ence management techniques on system capacity, coverage, and reliability, as well as the 
comparative merits and drawbacks of various interference management strategies. 

The research process involves searches of relevant databases, encompassing aca-
demic journals, conference proceedings, and online repositories. Employing a predefined 
set of keywords and combinations thereof—such as massive MIMO, 5G networks, inter-
ference management, beamforming, NOMA, JT-CoMP and their variations—ensures 

thorough exploration of the relevant literature. 
Key databases, including but not restricted to IEEE Xplore, arXiv, ScienceDirect, and 

Google Scholar, are harnessed for their extensive repositories of peer-reviewed publica-
tions and scholarly articles pertinent to the realms of wireless communication and signal 
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processing. The selection process adheres to stringent inclusion and exclusion criteria, en-
suring the relevance and quality of the chosen papers. These criteria encompass factors 
such as alignment with interference management in massive MIMO systems, publication 

date, peer-review status, technological significance, and accessibility of full-text articles. 
Relevant data, including the study objectives, methodologies, key findings, and con-

clusions, are extracted from selected papers for comparative analysis and the robust syn-
thesis of insights. 

To enhance reader comprehension, the review initiates with an exploration of the 

fundamental theories underlying massive MIMO systems, signal processing, and beam-
forming. This foundational understanding sets the stage for a comprehensive survey and 
analysis of these techniques. Subsequently, basic simulations are conducted using 
MATLAB (2023b) and its Communication Toolbox to illustrate the theories’ efficacy. Spe-
cifically, the simulations focus on linear precoding techniques and the non-orthogonal 

multiple access (NOMA) sum rate. By integrating theoretical insights with practical 
demonstrations, the review aims to provide a holistic understanding of the subject matter. 

2.1. Precoding Techniques Simulation 

The precoders/decoders simulation is based on spatial multiplexing schemes 

wherein the data stream is subdivided into independent sub-streams, one for each trans-
mit antenna employed. Consequently, these schemes provide a multiplexing gain and do 
not require explicit orthogonalization as needed for space–time block coding [4]. How-
ever, spatial multiplexing requires powerful decoding techniques at the receiver though, 
and this design highlights two ordered Successive Interference Cancellation (SIC) detec-
tion schemes [5]. 

The simulation compares the Bit Error Rate (BER) of Maximum Ratio Combining 
(MRC), Zero-Forcing (ZF) and Minimum Mean Squared Error (MMSE) alongside the op-
timal Maximum-Likelihood (ML) receiver. The evaluation is carried out in the context of 
spatial multiplexing schemes, employing an uncoded quadrature phase-shift keying 

(QPSK) modulation over independent transmit–receive 2 × 2 MIMO links affected by flat 
Rayleigh fading. Channel knowledge is assumed to be perfect at the receiver, with no 

feedback to the transmitter. 

2.2. NOMA Sum Rate Simulation 

In order to comprehensively assess the performance of NOMA in the specific context 
of our study, we employed 64 antennas at the base station, serving three users, each 
equipped with a single antenna, all operating in an environment characterized by Ray-
leigh fading-independent channel conditions. 

Table 1. MIMO-NOMA simulation parameters. 

System Parameters 

Number of Antennas at BS 64 

Number of Users 3 

Modulation Scheme 2nd Order QPSK 

Bandwidth 1 MHz 

Channel Rayleigh fading-independent channel for each user 

Distances of User to BS Known 

Based on the parameters outlined in Table 1, our simulation setup aimed to evaluate 
the key performance metrics: 

Sum Rate vs. OMA Sum Rate: We conducted simulations to compare the sum rate 
achieved in our MIMO-NOMA design against the sum rate attained through orthogonal 
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multiple access (OMA). This comparison allowed us to quantify the benefits of employing 
NOMA in enhancing the overall system throughput. 
Individual User Rate: We analyzed the rate achieved by each user within the MIMO-
NOMA configuration. This assessment provided insights into the fairness and efficiency 
of the NOMA allocation strategy across users. 

BER Analysis: Our simulations encompassed an assessment of the BER for the MIMO-
NOMA system under the specified conditions. This allowed us to gauge the system’s error 

performance and its sensitivity to channel impairments. 

3. Massive MIMO Systems

Point-to-Point MIMO emerged in the late 1990s as the simplest form of MIMO, where 

a base station equipped with an antenna array (M) serves a terminal also equipped with 
an antenna array (K). Different terminals are orthogonally multiplexed via a combination 
of time- and frequency-division multiplexing [6] (pp. 6–8). In each channel end, a vector 
is transmitted and a vector is received. In the presence of additive white Gaussian noise 
at the receiver, Shannon theory yields the following formulas for the link spectral effi-
ciency (in b/s/Hz) [6] (pp. 6–8). 𝐶𝐶𝑢𝑢𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙2 �𝐼𝐼𝑀𝑀 +

𝜌𝜌𝑢𝑢𝑢𝑢𝐾𝐾 𝐻𝐻𝐻𝐻𝐻𝐻�, (1) 

𝐶𝐶𝑑𝑑𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙2 �𝐼𝐼𝑀𝑀 +
𝜌𝜌𝑑𝑑𝑢𝑢𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻�, (2) 

where H is a ℂ𝑀𝑀×𝐾𝐾  matrix that represents the frequency response of the channel between 
the base station antenna array and the terminal antenna array; 𝜌𝜌𝑢𝑢𝑢𝑢  and 𝜌𝜌𝑑𝑑𝑢𝑢  are the uplink 
and downlink signal-to-noise ratios (SNRs), which are proportional to the corresponding 

total radiated powers. The receiver needs to know H for spectral efficiency values in (1) 
and (2), but the transmitter does not. However, performance can be improved if the trans-
mitter also knows the channel state information (CSI). Increasing the link spectral effi-
ciency may theoretically be achieved by using large arrays at both the transmitter and 
receiver [7]. 

The idea of a multiuser MIMO is for a single base station to serve a multiplicity of 

terminals using the same time-frequency resources. Effectively, the multiuser MIMO sce-
nario is obtained from the Point-to-Point MIMO setup by breaking up the K-antenna ter-
minal into multiple autonomous terminals [6] (pp. 8–10). The uplink and downlink sum 
spectral efficiencies are given by: 𝐶𝐶𝑢𝑢𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙2|𝐼𝐼𝑀𝑀 + 𝜌𝜌𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻 |, (3) 𝐶𝐶𝑑𝑑𝑢𝑢 = max𝑣𝑣𝑘𝑘≥0 𝑙𝑙𝑙𝑙𝑙𝑙2|𝐼𝐼𝑀𝑀 + 𝜌𝜌𝑑𝑑𝑢𝑢𝐻𝐻𝐷𝐷𝑣𝑣𝐻𝐻𝐻𝐻|, (4) 

where ν is a vector and ∑ 𝑣𝑣𝑘𝑘 ≤ 1𝑘𝑘𝑘𝑘=1 . For a given 𝜌𝜌𝑢𝑢𝑢𝑢 , the total uplink power is K times 

greater than for the Point-to-Point MIMO model [6] (pp. 8–10). The possession of CSI is 
crucial to both (3) and (4). It is worth to note that the terminal antennas in the point-to-
point case can cooperate, whereas the terminals in the multiuser case cannot, which does 
not compromise the uplink sum spectral efficiency as seen by comparing (1) and (3). Also, 
the downlink capacity (4) may exceed the downlink capacity in (2) for Point-to-Point 

MIMO, because (4) assumes that the base station knows H, whereas (2) does not. Multi-
user MIMO has two fundamental advantages over Point-to-Point MIMO. First, it is much 

less sensitive to assumptions about the propagation environment. For example, the line-
of-sight (LoS) conditions are stressing for Point-to-Point MIMO, but not for multiuser 

MIMO. Second, multiuser MIMO requires only single-antenna terminals. Notwithstand-
ing these virtues, two factors seriously limit the practicality of multiuser MIMO in its orig-
inally conceived form. First, to achieve the spectral efficiencies in (3) and (4) requires com-
plicated signal processing by both the base station and the terminals. Second, and more 
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seriously, on the downlink both the base station and the terminals must know H, which 

requires substantial resources to be set aside for the transmission of pilots in both direc-
tions. For these reasons, the original form of multiuser MIMO is not scalable either with 

respect to M or to K [6,7] (pp. 8–10). 
Massive MIMO is a useful and scalable version of multiuser MIMO [8]. According to 

Equations (3) and (4), further growth of the number of base station antennas (M) only 

yields logarithmically increasing throughputs while incurring linearly increasing 
amounts of time spent on training. There are three fundamental distinctions between mas-
sive MIMO and conventional multiuser MIMO. First, only the base station learns the fre-
quency response of the channel (H). Second, the number of base station antennas is typi-
cally much larger than the K users, although this does not have to be the case. Third, sim-
ple linear signal processing is used both on the uplink and on the downlink owing to the 
channel hardening. These features render massive MIMO scalable with respect to the 
number of base station antennas, M [6] (pp. 10–15). 

Cooperative and non-cooperative massive MIMO are two distinct configurations of 
coordination among the base stations or access points [9]. A cooperative massive MIMO 

system involves distributed antennas on different base stations to form a virtual antenna 
array to achieve MIMO communications [9]. Both CSI and data are shared among the col-
laborating BSs through backhaul links. This contributes to interference cancellation, and 
data are passed to the scheduled downlink users cooperatively from the BSs (sometimes 

using beamforming) [10]. Therefore, cooperative massive MIMO can improve the system 
performance by exploiting the spatial domain of mobile fading channels, mitigating the 
inter-cell interference, enhancing the coverage and reliability, and overcoming the limita-
tions of conventional MIMO systems that require multiple antennas on each device [9]. 
Cooperative massive MIMO can be implemented using techniques such as coordinated 
multipoint (CoMP) or cell-free massive MIMO (CF mMIMO) [9,11]. 

Non-cooperative massive MIMO uses multiple antennas on each access point to serve 
multiple users without coordination with other access points [9], which can improve the 

system performance by using linear precoding and detection techniques that require the 
knowledge of the channel state information at the transmitter or receiver [12]. 

While massive MIMO allows simultaneous communication with multiple users, en-
hanced spectral efficiency, and better QoS, it also introduces new challenges related to 
interference management. With a high density of antennas in different cells and the num-
ber of users, the interference among the transmitted and received signals becomes more 
pronounced, potentially degrading the system performance. Therefore, effective interfer-
ence management techniques are essential to harness the full potential of massive MIMO 

systems in 5G NR networks. 
The rest of this paper is structured as follows. In Section 4, we introduce some signal 

processing methods, such as channel estimation, signal detection, and precoding, which 
are used to improve the signals’ transmission and reception. Section 5 is devoted to ex-
plaining the beamforming method, which employs antenna arrays to steer the signals to-
ward a desired direction. The NOMA and JT-CoMP methods are discussed in Section 6. 
These methods are used to cancel the interference caused by multiple users sharing the 

same spectrum or multiple base stations serving the same user. The conclusions follow in 
Section 7. 

4. Signal Processing Methods

The quality of the wireless transmission depends on the knowledge of the CSI at both 
ends of the link, which reflects the effects of shadowing, scattering, fading, and path loss 
on the signal propagation channel. In massive MIMO systems, the pilot signals are used 
to estimate the CSI in both the uplink and downlink directions to optimize the equalizer 
at the receiver. The length of the pilot signals should be enough to match the number of 
antennas at the transmitter or the number of users. However, pilot contamination arises 

as a new matter, which happens when different users in neighboring cells use the same 
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pilot signals. This leads to interference and error in the channel estimation. To solve this 
problem, various channel estimation methods have been proposed that use advanced al-
gorithms to select the best channel responses from the received pilot signals, often with 

less pilots than users. 

4.1. Channel Estimation 

Massive MIMO systems require periodic channel estimation to cope with the non-
stationary wireless channel. The channel estimation can be performed in different ways 
depending on the duplexing mode, the direction of the CSI feedback, and the number of 
antennas and users. Time division duplexing (TDD) is one of simplest duplexing modes, 

where the channel is estimated in one direction and applied in both directions assuming 

reciprocity. TDD systems have the advantages of an independent CSI acquisition time and 
coherent antenna processing at the BS [7,13]. The BS needs the CSI for both downlink pre-
coding and uplink detection, which can be obtained by using pilot signals proportional to 
the number of transmit antennas. 

In frequency division duplexing (FDD), the uplink and downlink use different fre-
quency bands, which means a different CSI for each link. The uplink channel estimation 
at the BS is performed by letting all the users send different pilot sequences. To obtain the 

CSI for the downlink channel, the BS transmits pilot symbols to all the users. The users 
respond by the estimated CSI for the downlink channels [13]. The time required for uplink 
pilot transmission is independent of the number of antennas at the BS; however, the band-
width resource required to transmit the downlink pilot symbols is proportional to the 
number of antennas at the BS. As the number of antennas at the BS increases, a valuable 

uplink band is required to transmit the downlink pilot symbols. Therefore, the downlink 
channel estimation becomes infeasible for FDD systems [7], but the TDD approach can 
resolve this issue due to channel reciprocity, as only the CSI for the uplink needs to be 

estimated. This is used by the BSs to detect the uplink data and to generate beamforming 
vectors for downlink data transmission. In addition, linear MMSE-based channel estima-
tion can provide near-optimal performance with low complexity [14], even if the pilot 
sequences employed by users in neighboring cells may no longer be orthogonal to those 
within the cell due to the limited channel coherence time, leading to a pilot contamination 

problem [15]. 
In 4G and 5G, channel quantization, codebook-based CSI feedback, and CS-based CSI 

feedback form the foundation for FDD system implementation. Each approach addresses 
the challenge of conveying channel information while managing the trade-offs between 
accuracy and feedback overhead. 

Codebooks have been an indispensable part of wireless communication standards 
since the first release of Long-Term Evolution in 2009. They offer an efficient way to ac-
quire the CSI for multiple antenna systems. Nowadays, a codebook is not limited to a set 
of pre-defined precoders but refers to a CSI feedback framework, which is more and more 
sophisticated [16]. The meaning of codebook extends to the whole CSI report mechanism, 
which helps the base station compute the precoding matrix with the feedback from the 
UEs. The codebook is known to the user and the BS. The user searches for the codeword 

that is the closest to the downlink CSI and feeds back the corresponding index to the BS. 

Upon receiving the index, the BS can obtain the channel by looking up the shared code-
book [17]. The limitations of this approach stem from the complexity of the search algo-
rithm and the lower accuracy of the CSI. 

Compressive Sensing (CS)-based CSI feedback involves the concept of sparse repre-
sentation, where a signal can be expressed as a linear combination of a few essential com-
ponents from a predefined and overcomplete dictionary [18]. The CSI matrix exhibits 
sparsity in specific domains, including time, spatial, spatial–temporal, and spatial–fre-
quency domains [18]. This means that not all the details of the signal need to be explicitly 
conveyed; instead, a sparse representation captures the most representative information. 

CS can be used to reduce the overhead of the downlink CSI. Given that the number of 
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scatter clusters is much smaller than that of the transmit antennas at the BS in massive 
MIMO systems, the CSI matrix can be represented by much fewer parameters, and the 
spatial domain turns into the sparse angular domain using discrete Fourier transform 

(DFT) [17]. 

4.2. Signal Detection 

Linear and non-linear detectors are two types of detectors for massive MIMO sys-
tems, where the transmitter and the receiver need to recover the transmitted data from the 
received signals. These detectors differ in the complexity and accuracy of the signal detec-
tion, as well as in the techniques they use to exploit the CSI [19]. 

Linear detectors use linear operations such as matrix inversion, multiplication, or 

projection to perform signal detection with low complexity and high parallelism, but they 
suffer from performance degradation due to noise enhancement, interference, or channel 

ill-conditioning [15]. Well-known detectors, such as matched-filter (MF) receivers, zero-
forcing (ZF) receivers, and minimum mean-square-error (MMSE) receivers can asymptot-
ically achieve capacity as the number of antennas at the BS is large enough compared to 

the number of users and the channel vectors from different users are independent [7]. 
In addition, signal detection can be performed using non-linear operations such as 

tree search, lattice reduction, or optimization, known as non-linear detectors. Non-linear 
detectors have high accuracy and can approach the optimal maximum likelihood (ML) 

performance, but they have high complexity and low parallelism, especially when the 

number of antennas, users, or subcarriers is great [19]. Lattice Reduction (LR)-based linear 
detection improves the performance of ordinary linear detection. However, they use a 

linear transformation on an equivalent system model obtained using LR techniques in-
stead of using it on the received signal model. The new channel matrix has more orthog-
onality than the old one. 

4.3. Precoding Techniques 

MIMO is a technique that uses multiple channels between the BS and users with suit-
able space–time coding to enhance the system throughput. However, the massive MIMO 
system operates by space division multiplexing with the knowledge of the CSI of every 

link between the BS and a user. 
Precoding in massive MIMO systems is essentially a beamforming approach that en-

ables multi-stream transmission [13]. By considering practical antenna array structures, 
the received signals from different terminals are combined in the uplink using appropriate 
decoding. The more the antennas are used, the finer the spatial focusing can be, so that a 

large array is built in practice. The trade-off is between power consumption and perfor-
mance, especially in high bit rate scenarios. The use of non-linear but power-efficient RF 
front-end amplifiers can reduce power consumption, but it may cause signal distortion. 
Therefore, the transmit signal should have a low peak-to-average-power-ratio (PAPR), 
which can be achieved by using various PAPR reduction techniques and precoding 

[20,21]. On the other hand, the use of low-complexity precoding methods in large-scale 
systems can reduce the computational complexity of the precoder, but it may have subop-
timal performance or higher noise enhancement. Then, detector/precoder designs with 

enhanced power consumption and low estimation complexity are difficult to obtain but 
extremely important, particularly when the number of antennas increases. 

Linear and non-linear precoding techniques are both applicable for conventional 
MIMO systems. Linear precoders are simple but provide poor BER performance. By con-
trast, non-linear detectors provide a reasonable BER performance but have a high compu-
tational complexity. The best-known non-linear precoder techniques that can be used for 
multiuser MIMO systems are the dirty-paper-coding (DPC), vector perturbation (VP), and 
lattice-aided methods [22]. Such precoders can be used to obtain better performances com-
pared to using linear precoders at the cost of higher estimation complexity. However, 
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when the number of antennas at the BS increases, linear precoders, such as MRC, ZF, and 

MMSE, become nearly optimal. Therefore, it is more practical to use low-complexity linear 
precoding techniques in massive MIMO systems [7]. 

Using MRC receivers, BSs attempt to obtain the maximum SNR for every stream and 
ignore the influence of other multiuser interference. MRC receivers are advantageous in 
that they simplify signal processing; however, MRCs perform poorly in interference-lim-
ited scenarios because they do not address the effects of multiuser interference. In com-
parison to MRC receivers, ZFs consider multiuser interference in their calculations, but 

they do not consider noise effects [23]. Zero-forcing precoding performs better in multi-
user scenarios by estimating the orthogonal complement of each stream of the multiuser 

interference. In terms of power consumption and capacity efficiency, conjugate beam-
forming could obtain better overall computational measures compared to zero-forcing 
precoding because of the greater number of served terminals. By optimizing the manage-
ment of transmitted power, conjugate beamforming is more robust than ZF and may thus 
be preferable regardless of the computational aspects [24]. 

MMSE precoding is the optimal linear precoding in a massive MIMO downlink sys-
tem [13]. It minimizes the mean squared error between the transmitted and received sig-
nals as well as balances between reducing the interference and preserving the SNR. The 
MMSE outperforms ZF and MF in multi-cell MIMO systems. When linear precoding 
methods including MF, ZF and MMSE are used, the transmit signal from the BS can be 

expressed as: 𝑋𝑋𝑀𝑀𝑀𝑀 =
1√𝛼𝛼𝐻𝐻∗𝑆𝑆𝑑𝑑, (5) 

where 𝛼𝛼 is a power normalization factor (vector normalization is better for ZF, while ma-
trix normalization is better for MF). 𝑋𝑋𝑍𝑍𝑀𝑀 =

1√𝛼𝛼 𝐻𝐻∗(𝐻𝐻𝑇𝑇𝐻𝐻∗)−1𝑆𝑆𝑑𝑑 , (6) 

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1√𝛼𝛼𝐻𝐻∗ �𝐻𝐻𝑇𝑇𝐻𝐻∗ +

1𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝑘𝑘�−1 𝑆𝑆𝑑𝑑, (7) 

where 𝐻𝐻∗ is the Hermitian operation of the channel matrix, 𝑆𝑆𝑑𝑑 is source information vec-
tor and 𝐼𝐼𝑘𝑘 is the identity matrix for the 𝑘𝑘𝑘𝑘ℎ user. 

4.4. Simulation Results 

The graphic compares the BER of the MRC, ZF and MMSE alongside the optimal ML 

receiver. The detailed information about this simulation is given in Section 2.1. 
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Figure 2. Comparison between the bit error rates of various precodings. 

Observations from the results, as depicted in Figure 2, confirm that the ML receiver 
achieves the highest performance, outperforming MMSE and ZF receivers. Considering 

the receiver complexity, the ML receiver’s computational load increases exponentially 
with the number of transmit antennas. In contrast, the ZF and MMSE receivers exhibit 

linear complexity and incorporate successive interference cancellation techniques. Linear 
precoders are also applicable in multi-cell massive MIMO systems, where cooperating 

base stations (BSs) collaborate to jointly serve users across various cells, echoing the per-
spective presented in [25]. 

5. Beamforming Method

Beamforming is a process formulated to produce the radiated beam patterns of the 
antennas by completely building up the processed signals in the direction of the desired 

terminals and cancelling the beams of the interfering signals. This can be achieved by us-
ing a finite impulse response (FIR) filter, which can adjust its weights adaptively to achieve 
optimal beamforming [24]. Beamforming has several benefits for massive MIMO systems, 
such as higher energy efficiency, better spectral efficiency, and suitability for mm-wave 

bands. The beamforming concept is widely used in advanced wireless communication 

systems, such as LTE, and recently in 5G wireless systems. 
To communicate with all the users in a multiuser configuration, the zero-forcing 

beamforming algorithm is applied at the base station due to its low complexity. The BS 
can communicate to each user via individual beams unless 𝐾𝐾 users are in the same direc-
tion, which can create overlap between beams and generate interference. It shows in [26] 
that the weight 𝑤𝑤𝑖𝑖 generated by the zero-forcing beamforming algorithm for the user 𝑖𝑖 
ensures that the BS can communicate with the user via its own beam, and the interference 

with other users can be avoided if the beam is sharp enough or the users are far from each 
other. So then, the transmitted signal at the BS is a multiplication of the information signals 
of all the users and their own weights. 

𝑋𝑋𝐵𝐵𝑀𝑀𝐵𝐵𝑀𝑀 = �𝑤𝑤𝑘𝑘�𝑎𝑎𝑘𝑘𝑝𝑝𝑆𝑆𝑘𝑘𝐾𝐾
𝑘𝑘=1 , (8) 

where 𝑝𝑝 denotes the transmit power of BS, 𝑎𝑎𝑘𝑘 the power allocation coefficient of the user 
k, and 𝑆𝑆𝑘𝑘 represents the information signal of user k. The received signal at the user 𝑖𝑖 still 
includes the thermal noise (𝑛𝑛𝑖𝑖 ∈ 𝜎𝜎𝑖𝑖2ℂ𝑢𝑢×1) and the signal of others because of the overlap 

of the beams. 
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𝑌𝑌𝑖𝑖𝐵𝐵𝑀𝑀𝐵𝐵𝑀𝑀 = 𝐻𝐻𝑖𝑖𝑤𝑤𝑖𝑖�𝑎𝑎𝑖𝑖𝑝𝑝𝑆𝑆𝑖𝑖 +𝐻𝐻𝑖𝑖 � 𝑤𝑤𝑘𝑘�𝑎𝑎𝑘𝑘𝑝𝑝𝑆𝑆𝑘𝑘𝐾𝐾
𝑘𝑘=1,≠𝑖𝑖 + 𝑛𝑛𝑖𝑖 , (9) 

where the weight depends on the channel response matrix 𝐻𝐻𝑖𝑖   and 𝐻𝐻𝑖𝑖𝑤𝑤𝑖𝑖 = 0 (𝑖𝑖 ≠𝑘𝑘),  𝐻𝐻𝑖𝑖𝑤𝑤𝑖𝑖 = 𝐼𝐼  in case the users are far from each other. The SINR of user 𝑖𝑖 is the result of 
(1− 𝜌𝜌2) due to the channel estimation error, and γ𝑖𝑖𝑘𝑘𝜌𝜌2 is due to the overlap of the beams 

of users 𝑖𝑖 and k. 𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑖𝑖𝐵𝐵𝑀𝑀𝐵𝐵𝑀𝑀 =
𝜌𝜌2Ω𝑖𝑖𝑎𝑎𝑖𝑖𝛿𝛿

(1−𝜌𝜌2)Ω𝑖𝑖𝑎𝑎𝑖𝑖𝛿𝛿+∑ (1−𝜌𝜌2+γ𝑖𝑖𝑘𝑘𝜌𝜌2)Ω𝑖𝑖𝑎𝑎𝑘𝑘𝛿𝛿𝐾𝐾𝑘𝑘=1,≠𝑖𝑖 +1, (10) 

where 𝛿𝛿 =
𝑝𝑝𝜎𝜎2, Ω𝑖𝑖 denotes the variance of the channel gain between the BS and user 𝑖𝑖, and 

the overlap factor of the beams γ𝑖𝑖𝑘𝑘. As the number of antennas at the BS is not enough to 
generate a sharp beam and many users are close to each other in a high-density user en-
vironment, the interference signal remains and depends on an overlap factor of the beams. 
In addition, most of the several well-known beamforming algorithms have assumed per-
fect knowledge of the CSI at both transceivers, and they do not adapt to the changes in the 

transmission environment and the relative position between transceivers. 
Several works have been conducted to classify the beamforming techniques accord-

ing to their characteristics, such as analogue beamforming, digital beamforming, and hy-
brid (digital and analogue) beamforming [27,28], which is a most considerate technique 
for 5G to partition beamforming between the digital and RF domains to reduce the cost 

associated with the number of RF signal chains (number of antennas). Ref. [29] classified 
the beamforming methods into switched beamforming and adaptive beamforming, as 

show the figure. 

Figure 3. Adaptive beamforming (a) and switched beamforming (b). 

In switched (Figure 3.b) array beamforming, one beam can serve more than one ter-
minal at the same time. However, adaptive (Figure 3.a) array systems can create specific 
beam shapes and direct the main lobe toward a desired mobile station, and consequently, 
null toward the interfering signals. Adaptive beamforming is more suitable in high user 

density environments but requires the BS to update the location of the mobile station, 
which is a hard task because there may be too many mobile stations in real time that over-
load the process. It is considerably more difficult to put an adaptive beamforming system 
into practice than a switched beamforming system [23]; however, the recent studies re-
lated to massive MIMO prefer adaptative beamforming to switched beamforming because 

of its reliability for 5G requirements. 
Another factor that can improve the quality-of-service of beamforming techniques is 

the use of mm-wave bands, which are high-frequency bands. In mm-wave bands, the an-
tenna array is extremely small owing to the size of the wavelength and the beam width 
being extremely sharp, which means they can only cover a short distance between the base 

station and the users. Most current wireless communication applications are still focused 
on narrowband beamforming. However, wideband beamforming becomes important for 
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IoT machine-to-machine applications that require 5G standards to reach high speeds and 
high capacities regardless of the signal processing complexity. 

6. NOMA and JT-CoMP Methods

By considering the high user density, the conventional multiple access techniques are 
encountering limitations in managing interference and ensuring resource allocation. To 
overcome these problems, NOMA and JT-CoMP emerged as major solutions, where they 
enable power-domain user multiplexing and the exploitation of the channel-gain differ-
ence among the users in a cellular system, two features that were not exploited in past 
cellular systems. 

6.1. Non-Orthogonal Multiple Access Method 

NOMA is a widely used approach to deal with the problem of multiple nearby users 

by providing multiple access based on the power domain [26,30,31]. It is considered as a 
promising multiple access technique for 5G mobile networks due to its superior spectral 
efficiency [32]. OFDMA and NOMA are both techniques that allow multiple users to share 
the same radio resource in wireless networks; however, they differ in how they allocate 
the resource among the users. OFDMA uses orthogonal subcarriers to divide the resource 

into subchannels and assigns each subchannel to one user at a time, while NOMA uses 

non-orthogonal signals to superimpose the data of multiple users on the same subchannel 
and uses different power levels or codes at the transmitter and the SIC method to detect 

the signals at the receiver. 
The NOMA method assigns more power to users with low channel gain and less 

power to users with high channel gain. The user with low channel gain decodes its own 
signal by considering the signals of other users as interference [26]. The user with high 
channel gain applies the SIC, operates following the principle of the NOMA method to 

separate superimposed symbols and removes the inter-user interference, and then de-
codes its own signal. 

The broadcast information signals simultaneously send to K users with different 
power levers [26], which can be formulated as follows: 

𝑋𝑋𝑆𝑆𝑁𝑁𝑀𝑀𝐵𝐵 = ��𝑎𝑎𝑘𝑘𝑝𝑝𝑆𝑆𝑘𝑘𝐾𝐾
𝑘𝑘=1 , (11) 

The user 𝑖𝑖 receives the information signals of all the users: 

𝑌𝑌𝑖𝑖𝑆𝑆𝑁𝑁𝑀𝑀𝐵𝐵 = 𝐻𝐻𝑖𝑖��𝑎𝑎𝑘𝑘𝑝𝑝𝑆𝑆𝑘𝑘𝐾𝐾
𝑘𝑘=1 + 𝑛𝑛𝑖𝑖 , (12) 

𝑌𝑌𝑖𝑖𝑆𝑆𝑁𝑁𝑀𝑀𝐵𝐵 = 𝐻𝐻𝑖𝑖�𝑎𝑎𝑖𝑖𝑝𝑝𝑆𝑆𝑖𝑖 +𝐻𝐻𝑖𝑖 � �𝑎𝑎𝑘𝑘𝑝𝑝𝑆𝑆𝑘𝑘𝐾𝐾
𝑘𝑘=1,≠𝑖𝑖 + 𝑛𝑛𝑖𝑖

𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑁𝑁𝑀𝑀𝐵𝐵 =
𝜌𝜌2𝛺𝛺𝑖𝑖𝑎𝑎𝑖𝑖𝛿𝛿∑ (1 − 𝜌𝜌2)𝛺𝛺𝑖𝑖𝑎𝑎𝑘𝑘𝛿𝛿𝑖𝑖−1𝑘𝑘=1 + ∑ Ω𝑖𝑖𝑎𝑎𝑘𝑘𝛿𝛿+  1𝐾𝐾𝑘𝑘=𝑖𝑖+1 , (13) 

As mentioned in [26], 𝑎𝑎𝑘𝑘 the power allocation coefficient is inversely proportional 
to the channel gain, the user 𝑖𝑖 firstly utilizes the SIC operation to cancel the signals of 

users 1, 2,⋯ , 𝑖𝑖 − 1 and then detects its own signal while considering the signal of users 𝑖𝑖 + 1,⋯ ,𝐾𝐾 as interference. However, because of the outdated CSIT, the interference from 
users 1, 2,⋯ , 𝑖𝑖 − 1 is not completely cancelled. Therefore, the achievable rate at user 𝑖𝑖 is 

given by 𝑆𝑆𝑖𝑖,𝑆𝑆𝑁𝑁𝑀𝑀𝐵𝐵 = 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 + 𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁�.

In contrast, the MIMO-OMA operation divides our transmission into 𝐾𝐾 (number of 

users) equal time slots and allocates the total power resource to successively transmit to 
each user within their respective time slot. Therefore, the achievable rate of MIMO-OMA 
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for user 𝑖𝑖 is given by 𝑆𝑆𝑖𝑖,𝑁𝑁𝑀𝑀𝐵𝐵 = 1 𝐾𝐾� 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 + 𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁�, reflecting the fact that only 1 𝐾𝐾�
of the time slot is utilized for communication with each user. Conversely, in MIMO-
NOMA, the entire time slot is utilized for simultaneous transmission to 𝐾𝐾 users, leading 
to enhanced efficiency. 

6.2. Simulation Results 

A base station equipped with 64 antennas served three users located, respectively, at 

500 m, 200 m and 50 m from the BS. This simulation parameters are given in Section 2.2. 

Figure 4. Illustrates 8 × 8 MIMO-NOMA serving 3 users under the Rayleigh fading channel. 

The achievable sum rate of MIMO-NOMA is 𝑆𝑆𝑆𝑆𝑁𝑁𝑀𝑀𝐵𝐵 = ∑ 𝑆𝑆𝑖𝑖,𝑆𝑆𝑁𝑁𝑀𝑀𝐵𝐵3𝑖𝑖=1  , while that of 
MIMO-OMA is 𝑆𝑆𝑁𝑁𝑀𝑀𝐵𝐵 = ∑ 𝑆𝑆𝑖𝑖,𝑁𝑁𝑀𝑀𝐵𝐵3𝑖𝑖=1  respect to the Figure 4. 
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Figure 5. Sum rate comparison NOMA vs. OMA. 

As shown in the Figure 5, MIMO-NOMA achieves a higher sum rate than MIMO-
OMA because it allows the users to share the same frequency resource at the same time. 
As it shows in the individual user rate graph, the weak user exhibits saturation in its 
achievable rate beyond a transmit power of 10 dBm. This consistent characteristic is ob-
served universally across all the NOMA networks. The interference encountered by the 
weak user results in the saturation of its achievable rate. However, this saturation poses 

no issue if the required data rate of the weak user is below the saturation limit. In contrast, 
this issue is absent in OMA, as the weak user does not contend with interference from 
simultaneous transmissions.  
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Figure 6. Comparison of the individual user data rate. 

Figure 7. Users’ BER comparison. 

From the Figure 6 and 7, the user 1 has the worst BER of the three users, as it receives 

interference from both user 2 and user 3. User 2 has a moderate BER, as it only receives 

interference from user 3. User 3 has the best BER, as it does not face any interference. 
In [32,33], the authors made a proposal of a combination of the NOMA and beam-

forming methods especially for downlink multi-users systems. They considered a multi-
antenna base station that uses beamforming to eliminate the interference between clusters 

and makes a trade-off between the complexity and system performance. The use of 
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NOMA with the SIC approach was intended to remove the interference within clusters. 

Consequently, the inter-cluster and intra-cluster interferences were completely cancelled. 
Therefore, combining the NOMA and beamforming methods can enhance the spectral 

efficiency of the system. However, it is essential to note that while NOMA effectively al-
locates resources to users with lower channel gains, it may also result in a reduced SINR 

for these users due to the interference experienced. So, despite the overall spectral effi-
ciency improvement, careful consideration is needed to mitigate the potential reduction 
in the SINR for users with lower channel gains. 

6.3. Joint Transmission Coordinated Multi-Point 

The concept of joint transmission coordinated multi-point (JT-CoMP) emerges as a 

promising solution to overcome the challenges posed by the increasing user density in 
modern wireless networks. JT-CoMP addresses these challenges through a collaborative 

approach that leverages the strengths of multiple base stations (BSs) working in tandem 
to transmit data to a single user device at the same time in order to improve the signal 

quality and reduce the interference. There are different types of JT-CoMP, such as coher-
ent and non-coherent transmission, centralized and distributed scheduling, and static and 
dynamic clustering. These types differ in how the base stations coordinate their transmis-
sions, how the user device combines the received signals, and how the network selects the 
best base stations to serve the user device [34,35]. At the heart of JT-CoMP lies the principle 

of coordinated multi-point transmission, where neighboring base stations form a coordi-
nated cluster to jointly serve users within their overlapping coverage areas. This coopera-
tive approach contrasts starkly with traditional cellular networks, where each base station 

independently serves its designated users. JT-CoMP harnesses the spatial diversity of 
massive MIMO to ensure that users experience enhanced signal quality, higher data rates, 
and consistent connectivity, even at the cell edges [36,37]. 

One of the primary advantages of JT-CoMP is its capability to effectively mitigate 
interference. By converting the interfering signals from the other base stations into useful 

signals for the user device, the signal overlap is minimized and unwanted interference is 
nullified. This way, the user device can combine the received signals from different base 
stations and achieve a higher SINR and throughput. Furthermore, JT-CoMP contributes 

to load balancing across base stations. Dynamic resource allocation and user association 
ensure that the available network resources are optimally distributed, avoiding network 

congestion and ensuring a more equitable distribution of traffic [34,35]. However, effective 
cooperation among base stations requires accurate synchronization, low latency backhaul 

links, and the exchange of the real-time CSI. Ensuring seamless coordination without in-
troducing additional latency demands advanced network architecture and management. 
Additionally, JT-CoMP’s complexity increases as the number of cooperating base stations 

and users grows. 

Some research proposes a combination of JT-CoMP and NOMA for joint transmis-
sion coordination and interference management by comparing the performance of JT-
CoMP-NOMA with two benchmark schemes, such as JT-CoMP-OMA and NOMA with-
out CoMP [38]. The authors show that JT-CoMP-NOMA can achieve a higher network 

sum rate than both benchmark schemes, especially when the number of users and base 

stations is great. JT-CoMP-NOMA can improve the fairness among users by increasing 
the minimum rate of cell-edge users, who suffer from severe inter-cell interference. This 
work also demonstrates that JT-CoMP-NOMA can effectively exploit the spatial diversity 
and multiplexing gains of CoMP and NOMA, respectively. However, there are some lim-
itations and challenges of JT-CoMP-NOMA, such as the high computational complexity 

and the large feedback overhead due to the CSI imperfection. 

7. Conclusions
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In the pursuit of delivering reliable, high-quality connectivity in environments char-
acterized by a high user density, massive MIMO systems prove instrumental in meeting 
the stringent requirements of 5G networks. Through a comprehensive exploration of the 

three main interference management approaches, beamforming harnesses spatial preci-
sion to enhance signal quality, while NOMA introduces power-based interference mitiga-
tion through dynamic user power allocations and JT-CoMP facilitates coordinated base 

station cooperation to nullify inter-cell interference. 
The investigation demonstrates that combining these techniques holds immense 

promise for overcoming the interference challenges in high-density scenarios. The syner-
gistic integration of beamforming, NOMA, and JT-CoMP may effectively contribute to 

achieving the full potential of 5G networks. Additionally, combining precoding and 

equalization yields positive outcomes for canceling interference in multiuser MIMO sys-
tems. 

However, there are several interconnected design issues that need careful considera-
tion and resolution, such as developing more advanced signal processing techniques for 
accurate detection with low complexity, using deep learning for channel estimation to 

reduce the training time in FDD systems, exploring the use of mm-wave frequency bands, 
and applying adaptive beamforming to improve the channel gain, capacity, received 

power, and reduce latency. 
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Abbreviations 

5G NR Fifth-Generation New Radio 

MIMO Multiple-Input Multiple-Output 

NOMA Non-Orthogonal Multiple Access  

JT-CoMP Joint Transmission Coordinated Multiple-Point 

3GPP 3rd Generation Partnership Project  

OFDM Orthogonal Frequency Division Multiplexing 

LTE Long-Term Evolution  

4G Fourth Generation 

IoT Internet of Things  

SINR Signal-to-Interference-Plus-Noise Ratio 

SIC Successive Interference Cancellation  

BER Bit Error Rate 

MRC Maximum Ratio Combining 

ZF Zero-Forcing 

MMSE Minimum Mean-Squared-Error 

ML Maximum Likelihood 

QPSK Quadrature Phase-Shift Keying 

OMA Orthogonal Multiple Access 

SNR Signal-to-Noise Ratios  

CSI Channel State Information 

LoS Line-of-Sight 

CF mMIMO Cell-Free Massive MIMO  

BS Base Station 

QoS Quality of Service  
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TDD Time Division Duplexing 

FDD Frequency Division Duplexing 

MF Matched-Filter  

LR Lattice Reduction 

PAPR Peak-to-Average-Power-Ratio 

RF Radio Frequency 

DPC Dirty-Paper-Coding 

VP Vector Perturbation 

FIR Finite Impulse Response 
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