[1] J.J. Hsieh, M.P. Purdue, S. Signoretti, C. Swanton, L. Albiges, M. Schmidinger, D.Y. Heng, J. Larkin, and V. Ficarra, Renal cell carcinoma. Nat Rev Dis Primers 3 (2017) 17009.
[2] B.A. Inman, M.R. Harrison, and D.J. George, Novel immunotherapeutic strategies in development for renal cell carcinoma. Eur Urol 63 (2013) 881-9.
[3] M. Meskawi, M. Sun, Q.D. Trinh, M. Bianchi, J. Hansen, Z. Tian, M. Rink, S. Ismail, S.F. Shariat, F. Montorsi, P. Perrotte, and P.I. Karakiewicz, A review of integrated staging systems for renal cell carcinoma. Eur Urol 62 (2012) 303-14.
[4] I. Wolff, M. May, B. Hoschke, R. Zigeuner, L. Cindolo, G. Hutterer, L. Schips, O. De Cobelli, B. Rocco, C. De Nunzio, A. Tubaro, I. Coman, B. Feciche, M. Truss, O. Dalpiaz, R.S. Figenshau, K. Madison, M. Sanchez-Chapado, M.D. Santiago Martin, L. Salzano, G. Lotrecchiano, S.F. Shariat, M. Hohenfellner, R. Waidelich, C. Stief, K. Miller, S. Pahernik, S. Brookman-May, C.P. Members of the, and G. the European Association of Urology Young Academic Urologists Renal Cancer, Do we need new high-risk criteria for surgically treated renal cancer patients to improve the outcome of future clinical trials in the adjuvant setting? Results of a comprehensive analysis based on the multicenter CORONA database. Eur J Surg Oncol 42 (2016) 744-50.
[5] J.J. Hsieh, V. Le, D. Cao, E.H. Cheng, and C.J. Creighton, Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol 244 (2018) 525-537.
[6] C.J. Ricketts, A.A. De Cubas, H. Fan, C.C. Smith, M. Lang, E. Reznik, R. Bowlby, E.A. Gibb, R. Akbani, R. Beroukhim, D.P. Bottaro, T.K. Choueiri, R.A. Gibbs, A.K. Godwin, S. Haake, A.A. Hakimi, E.P. Henske, J.J. Hsieh, T.H. Ho, R.S. Kanchi, B. Krishnan, D.J. Kwiatkowski, W. Lui, M.J. Merino, G.B. Mills, J. Myers, M.L. Nickerson, V.E. Reuter, L.S. Schmidt, C.S. Shelley, H. Shen, B. Shuch, S. Signoretti, R. Srinivasan, P. Tamboli, G. Thomas, B.G. Vincent, C.D. Vocke, D.A. Wheeler, L. Yang, W.Y. Kim, A.G. Robertson, N. Cancer Genome Atlas Research, P.T. Spellman, W.K. Rathmell, and W.M. Linehan, The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep 23 (2018) 313-326 e5.
[7] T.W. Nilsen, and B.R. Graveley, Expansion of the eukaryotic proteome by alternative splicing. Nature 463 (2010) 457-63.
[8] F.E. Baralle, and J. Giudice, Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18 (2017) 437-451.
[9] Y. Wang, J. Liu, B.O. Huang, Y.M. Xu, J. Li, L.F. Huang, J. Lin, J. Zhang, Q.H. Min, W.M. Yang, and X.Z. Wang, Mechanism of alternative splicing and its regulation. Biomed Rep 3 (2015) 152-158.
[10] L.M. Gallego-Paez, M.C. Bordone, A.C. Leote, N. Saraiva-Agostinho, M. Ascensao-Ferreira, and N.L. Barbosa-Morais, Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 136 (2017) 1015-1042.
[11] N. Martinez-Montiel, N.H. Rosas-Murrieta, M. Anaya Ruiz, E. Monjaraz-Guzman, and R. Martinez-Contreras, Alternative Splicing as a Target for Cancer Treatment. Int J Mol Sci 19 (2018).
[12] J. Chen, and W.A. Weiss, Alternative splicing in cancer: implications for biology and therapy. Oncogene 34 (2015) 1-14.
[13] A.R. Kornblihtt, I.E. Schor, M. Allo, G. Dujardin, E. Petrillo, and M.J. Munoz, Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14 (2013) 153-65.
[14] X. Song, Z. Zeng, H. Wei, and Z. Wang, Alternative splicing in cancers: From aberrant regulation to new therapeutics. Semin Cell Dev Biol 75 (2018) 13-22.
[15] Y.S. Tsai, D. Dominguez, S.M. Gomez, and Z. Wang, Transcriptome-wide identification and study of cancer-specific splicing events across multiple tumors. Oncotarget 6 (2015) 6825-39.
[16] E. Sebestyen, M. Zawisza, and E. Eyras, Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res 43 (2015) 1345-56.
[17] K. Tomczak, P. Czerwinska, and M. Wiznerowicz, The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19 (2015) A68-77.
[18] A. Colaprico, T.C. Silva, C. Olsen, L. Garofano, C. Cava, D. Garolini, T.S. Sabedot, T.M. Malta, S.M. Pagnotta, I. Castiglioni, M. Ceccarelli, G. Bontempi, and H. Noushmehr, TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44 (2016) e71.
[19] M.C. Ryan, J. Cleland, R. Kim, W.C. Wong, and J.N. Weinstein, SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics 28 (2012) 2385-7.
[20] M. Ryan, W.C. Wong, R. Brown, R. Akbani, X. Su, B. Broom, J. Melott, and J. Weinstein, TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res 44 (2016) D1018-22.
[21] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R.B.J.B. Altman, Missing value estimation methods for DNA microarrays. 17 520-525.
[22] J.R. Conway, A. Lex, and N. Gehlenborg, UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33 (2017) 2938-2940.
[23] G. Yu, L.G. Wang, Y. Han, and Q.Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16 (2012) 284-7.
[24] J.H. Friedman, T. Hastie, and R.J.J.o.S.S. Tibshirani, Regularization Paths for Generalized Linear Models via Coordinate Descent. 033 (2010).
[25] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. J Stat Softw 39 (2011) 1-13.
[26] P. Blanche, J.F. Dartigues, and H. Jacqmin-Gadda, Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med 32 (2013) 5381-97.
[27] V.P. Balachandran, M. Gonen, J.J. Smith, and R.P. DeMatteo, Nomograms in oncology: more than meets the eye. The Lancet Oncology 16 (2015) e173-e180.
[28] A. Iasonos, D. Schrag, G.V. Raj, and K.S. Panageas, How to build and interpret a nomogram for cancer prognosis. J Clin Oncol 26 (2008) 1364-70.
[29] E.W. Steyerberg, and A.J. Vickers, Decision curve analysis: a discussion. Med Decis Making 28 (2008) 146-9.
[30] A.J. Vickers, and E.B. Elkin, Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 26 (2006) 565-74.
[31] B. Van Calster, L. Wynants, J.F.M. Verbeek, J.Y. Verbakel, E. Christodoulou, A.J. Vickers, M.J. Roobol, and E.W. Steyerberg, Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators. Eur Urol 74 (2018) 796-804.
[32] M. Fitzgerald, B.R. Saville, and R.J.J.J.J.o.t.A.M.A. Lewis, Decision Curve Analysis. 313 (2015) 409-10.
[33] S. Aravind, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. %J Proceedings of the National Academy of Sciences of the United States of America. 43 (2005).
[34] A. Liberzon, C. Birger, H. Thorvaldsdottir, M. Ghandi, J.P. Mesirov, and P. Tamayo, The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1 (2015) 417-425.
[35] F. Piva, M. Giulietti, A.B. Burini, and G. Principato, SpliceAid 2: a database of human splicing factors expression data and RNA target motifs. Hum Mutat 33 (2012) 81-5.
[36] Y. Xiong, Y. Deng, K. Wang, H. Zhou, X. Zheng, L. Si, and Z. Fu, Profiles of alternative splicing in colorectal cancer and their clinical significance: A study based on large-scale sequencing data. EBioMedicine 36 (2018) 183-195.
[37] M.I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15 (2014) 550.
[38] Y. Ge, N. Weygant, D. Qu, R. May, W.L. Berry, J. Yao, P. Chandrakesan, W. Zheng, L. Zhao, K.L. Zhao, M. Drake, K.J. Vega, M.S. Bronze, J.J. Tomasek, G. An, and C.W. Houchen, Alternative splice variants of DCLK1 mark cancer stem cells, promote self-renewal and drug-resistance, and can be targeted to inhibit tumorigenesis in kidney cancer. Int J Cancer 143 (2018) 1162-1175.
[39] D.J.C.R. Bates, VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. 62 (2002).
[40] J. Jiang, X. Chen, H. Liu, J. Shao, R. Xie, P. Gu, and C. Duan, Polypyrimidine Tract-Binding Protein 1 promotes proliferation, migration and invasion in clear-cell renal cell carcinoma by regulating alternative splicing of PKM. 7 (2017) 245.
[41] K. Chen, H. Xiao, J. Zeng, G. Yu, H. Zhou, C. Huang, W. Yao, W. Xiao, J. Hu, W. Guan, L. Wu, J. Huang, Q. Huang, H. Xu, and Z. Ye, Alternative Splicing of EZH2 pre-mRNA by SF3B3 Contributes to the Tumorigenic Potential of Renal Cancer. Clin Cancer Res 23 (2017) 3428-3441.
[42] C. Bianchi, S. Bombelli, F. Raimondo, B. Torsello, V. Angeloni, S. Ferrero, V. Di Stefano, C. Chinello, I. Cifola, L. Invernizzi, P. Brambilla, F. Magni, M. Pitto, G. Zanetti, P. Mocarelli, and R.A. Perego, Primary cell cultures from human renal cortex and renal-cell carcinoma evidence a differential expression of two spliced isoforms of Annexin A3. Am J Pathol 176 (2010) 1660-70.
[43] X. Feng, L. Zhang, W. Tu, and S. Cang, Frequency, incidence and survival outcomes of clear cell renal cell carcinoma in the United States from 1973 to 2014: A SEER-based analysis. Medicine (Baltimore) 98 (2019) e16684.
[44] M.B. Atkins, and N.M. Tannir, Current and emerging therapies for first-line treatment of metastatic clear cell renal cell carcinoma. Cancer Treat Rev 70 (2018) 127-137.
[45] M. Qu, J. Yu, H. Liu, Y. Ren, C. Ma, X. Bu, and Q. Lan, The Candidate Tumor Suppressor Gene SLC8A2 Inhibits Invasion, Angiogenesis and Growth of Glioblastoma. Mol Cells 40 (2017) 761-772.
[46] P. Lin, R.Q. He, F.C. Ma, L. Liang, Y. He, H. Yang, Y.W. Dang, and G. Chen, Systematic Analysis of Survival-Associated Alternative Splicing Signatures in Gastrointestinal Pan-Adenocarcinomas. EBioMedicine 34 (2018) 46-60.
[47] J. Zhu, Z. Chen, and L. Yong, Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer. Gynecol Oncol 148 (2018) 368-374.
[48] K.V. Lehmann, A. Kahles, C. Kandoth, W. Lee, and G.J.P.S.o.B.P.S.o.B. Rätsch, Integrative genome-wide analysis of the determinants of RNA splicing in kidney renal clear cell carcinoma. 20 (2014) 44-55.
[49] C.W. Yun, and S.H. Lee, The Roles of Autophagy in Cancer. Int J Mol Sci 19 (2018).
[50] P. Rajendran, A.M. Alzahrani, H.N. Hanieh, S.A. Kumar, R. Ben Ammar, T. Rengarajan, and M.A. Alhoot, Autophagy and senescence: A new insight in selected human diseases. J Cell Physiol 234 (2019) 21485-21492.
[51] D.P. Hall, N.G. Cost, S. Hegde, E. Kellner, O. Mikhaylova, Y. Stratton, B. Ehmer, W.A. Abplanalp, R. Pandey, J. Biesiada, C. Harteneck, D.R. Plas, J. Meller, and M.F. Czyzyk-Krzeska, TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer Cell 26 (2014) 738-53.
[52] A. Mizutani, D. Koinuma, H. Seimiya, and K. Miyazono, The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. Oncogene 35 (2016) 3514-23.
[53] B. Carpenter, C. MacKay, A. Alnabulsi, M. MacKay, C. Telfer, W.T. Melvin, and G.I. Murray, The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta 1765 (2006) 85-100.
[54] M. Rydzanicz, T. Wrzesinski, H.A. Bluyssen, and J. Wesoly, Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett 341 (2013) 111-26.