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Abstract: During continuous diffusion and propagation of intracellular ions, energy 

transition between electric and magnetic field is proceeded to present appropriate firing 

patterns. For theoretical neuron models, an equivalent Hamilton energy is derived by 

Helmholtz theorem. For neural circuits, the Hamilton energy can also be obtained by 

applying scale transformation on the field energy function. External stimuli injects 

energy into the neuron, and the energy level transition is induced accompanying with 

mode transition in the neuronal activity. On the flip side, large external stimuli can 

induce shape deformation of the cell and possible parameter shift occurs to keep neuron 

on appropriate energy level in the deterministic neuron models. In this letter, energy 

function for Hindmarh-Rose neuron is estimated and a criterion for transition between 

energy levels and firing modes is defined and explained. It provides possible clues for 

understanding the dependencies of pattern selection in discharge mode on energy level 

and adaptive controllability in neurons, and thus the neural activities in neurons and 

nervous system can be controlled by regulating energy flow.  
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1 Introduction

The activation of neural activities in nervous system depends on complete cooperation of 

biological neurons, and the collective behaviors are controlled by biophysical properties, 

local dynamics and external stimuli synchronously [1-4]. The biophysical features of 

coupled paths and synaptic junctions are crucial for controllability and self-adaption in 

neurons [5-8]. The electric synapse behaves its function in transient period for fast 

information processing and energy exchange between neurons [9-12]. Chemical synapse 

[13-16] regulates the electrical activities in neurons continuously and energy flow is 

propagated via field coupling [17-20]. The activation and regulation of chemical synapse 

rely on the neurotransmitter released from presynaptic membranes and then Calcium 

flow is guided to regulate the action potentials in a neuron and neural network, and 

electromagnetic field is induced for fast propagation of field energy and keeping stable 

signal propagation. In particular, the regulation of chemical synapse on neural activities 

can be approached by creating suitable memristive synapse [21-24].

For most of the generic neuron models [25-28], external stimuli are mapped into 

equivalent transmembrane current and thus the membrane potential is controlled 

effectively. That is, external realistic signals can be filtered and encoded before 

converting these physical, chemical and mechanical signals into electric signals [29-32]. 

In presence of complex electromagnetic environment, uniform and nonuniform radiation 

can induce polarization and magnetization of the media, and energy injection enables 

energy shunting and regulation on inner electric/magnetic field energy, which has 
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distinct impact on mode selection in neural activities under electromagnetic radiation 

[33-36]. Under noisy disturbance, nonlinear resonance including stochastic resonance, 

coherence resonance [37-40] and logic resonance [41-44] can be induced in many 

neuron models. In fact, the  majority of the neuron models are stimulated to exhibit 

distinct behaviors but sole firing mode in the neural activities by constant or periodic 

stimulus [45], which the neuron will show spiking, bursting, chaotic or quiescent state 

under certain forcing current. Indeed, multi-channel inputs and noisy driving can induce 

multiple modes of neuronal membrane potential, and the neuron will present a 

mixed-mode oscillation [46-50]. From physical viewpoint, energy flow plays important 

role in regulating the firing patterns and thus appropriate energy level can be selected. 

For neuron equivalent circuits, the internal field energy is converted to an equivalent 

dimensionless energy function under scale transformation, and this Hamilton energy 

[51-54] can be obtained by using Helmholtz theorem [55]. 

For two or more biological neurons, energy balance accounts for the creation and 

adaptive growth of the synaptic connection [56-60]. That is, energy injection introduces 

energy diversity and synaptic connections are created for fast energy propagation until 

reaching energy balance. In this work, external stimulus is applied and energy is 

injected and accommodated with time, and then parameter shift is induced to guide the 

neuron step to appropriate energy level accompanying with suitable firing mode in the 

neural activities. As a result, mode transition occurs and the electrical activities will 

show multiple firing modes. That is, a criterion for parameter shift dependence on 

external stimulus is explained in a simple deterministic neuron model. That is, jumping 

between different energy levels accounts for the occurrence of mixed mode in the 

electrical activities.

2 Model and scheme

For a generic an autonomous dynamical systems
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That is, the dynamical system can be replaced by an equivalent vector field, which is 

considered as a sum of divergence-free vector field Fc(X) and gradient vector field Fd(X). 

H represents the dimensionless Hamilton energy, and H describes the gradient 

distribution of generalized force in the phase space. J(X) meets the symmetric matrix 

condition for approaching position properties in the physical field. R(X) requires 

symmetric principal diagonal matrix satisfying the properties for gradient field. 

According to Helmholtz theorem [55], the energy function H is controlled by
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For a generic neural circuit or nonlinear circuit composed of capacitors and inductors, 

the field energy and its equivalent Hamilton energy are approached by



3

2 2 2 2
1 1 1 1 1 1 2 2

2 2 2 2
1 1 2 2 1 22 2

0 1 0 1 2

1 1 1 1 ;2 2 2 2 (3)1 1 ;2 2

L LW CV CV L i L i
W WH ax a x y yCV CV b b

ì =± ± + ± ± +ïïí
ï = = =± ± + ± ± +ïî

L L

L L

where V1, V2, , iL1, iL2 represent the output voltages from capacitors and induction 

currents from the inductor of the nonlinear circuits. The dimensionless variables x1, x2, 

,y1, y2, , are mapped from the physical variables for voltage and current, CV0
2 is 

considered as energy unit for obtaining dimensionless Hamilton energy and V0 is the 

intrinsic parameter for the nonlinear resistor in the circuit. For the known HR 

(Hindmarsh-Rose) neuron model presented by
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where the variables (x, y, z) represent the membrane potential, recovery variable for 

slow current and adaptive calcium current, respectively. The parameter λ estimates the 

resting potential of calcium channel and external stimulus I can regulate the 

development of different discharge patterns including bursting, spiking and chaotic 

states in the electric activities. According to Eq.(1), the HR model is considered in 

physical field as follows
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Following the criterion defined in Eq.(2), it requires
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Indeed, a suitable solution for Eq.(6) can be approached by
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As a result, any changes in the normalized parameters (d, r, s) and membrane potential 
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and current variable in the neuron model can induce energy release, and then the firing 

modes can be controlled. Furthermore, the injection or release of external energy may 

induce certain parameter shift, and the neural activities are regulated synchronously. 

Furthermore, the energy changes can be estimated by

4 2 2 5
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The external excitation I is usually considered as constant, periodic function and even 

filtered signals from chaotic source, after that the excitability is adjusted to develop 

different firing patterns. The evolution of energy (transient power) in isolated neuron is 

dependent on the selection of these intrinsic parameters (a, b, c, d, r, s, λ). It is known 

that neuron can select multiple neural activities such as quiescent, spiking, bursting and 

chaotic modes, and the energy changes will keep four levels by taming one parameter in 

adaptive criterion as follows
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where the symbol <*> represents a average of variable or function over time, p is one 

sensitive parameter in the normalized parameters (a, b, c, d, r, s, λ). For external 

excitation with periodic type as Acos(ωτ) or Asin(ωτ), its average power is approached 

by A2/2 within a transient period. The energy changes in the HR model are classified 

with four levels for selecting four different firing modes. Therefore, the average power 

for the external stimulus will control the parameter jump for reaching different energy 

levels. From Eq.(9), it is suggested that the four energy levels are spaced evenly, 

therefore, one of the parameter is jumped to another value when the power of injection 

energy is approached to 1/4, 2/4, 3/4, 4/4 average power of the neuron. That is, enough 

energy injection and absorption can break the energy balance and induce transition of 

energy level, and firing mode is also changed synchronously. In fact, biological neurons 

may require adaptive parameter shift under energy injection when mixed signals are 

applied to excite neurons as follows
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That is, realistic stimuli can be a filtered wave from chaotic source and more periodic 

signals are combined. Therefore, parameter shift can be induced when the injection 

energy is beyond certain energy levels and gains (k1, k2, k3) can be dependent on the 

intrinsic property of the media. That is, the energy level spacing becomes uneven. From 

physical viewpoint, the average power will become close to certain constant when a 

neuron is kept with certain firing mode. External can inject energy into the neuron, but 

the redundant energy supply is not effective to induce neuron to jump next higher 

energy level and shape deformation becomes available, therefore, parameter shift is 

induced to present suitable firing modes corresponding to the appropriate energy level. 

In this way, the intrinsic parameter p has relation to the external stimulus I as follow  

( ); ( ); (11)p p I or I I p= =

where p=p(I) indicates that one intrinsic parameter depends on the external excitation, 

and energy injection from external forcing can induce parameter shift due to energy 

accommodation in the neuron. On the other hand, I=I(p) can be explained that the effect 

of external stimulus can be mapped into equivalent transmembrane current, and it is 

dependent on one intrinsic parameter p for the neuron. To be point out, parameter shift 

occurs within finite range so that the average power of the neuron should match with 

(keep pace with) the average power from external stimulus, and the shape deformation 

accompanying with parameter shift is controlled by the supply of redundant energy of 

external energy injection. 

3 Numerical results and discussion

In this section, the fourth Runge-Kutta algorithm is applied to approach exact numerical 

solutions for the neuron model by setting time step h=0.001. Firstly, external excitation 

is changed to discern the firing modes in the neural activities, and the dependence of 

firing patterns on external stimulus is plotted in Fig.1.



6

Fig.1 Bifurcation of ISI (interspike interval) is calculated by applying different external stimuli I. The 

parameters are fixed at a=1, b=3, c=1, d=5, r=0.006, s=4, λ=−1.6. The small image in the upper right 

corners represent the evolution of membrane potentials presenting different discharge states.

From Fig.1, it is demonstrated that the firing patterns in membrane potentials can be 

regulated by the external stimulus effectively because of continuous energy injection. 

Therefore, it is important to confirm the regulation of Hamilton energy in Eq.(7) by 

setting external stimulus as four different constants, which are effective to develop four 

different kinds of firing patterns.

Fig.2 Sampled time series for membrane potentials and transition of energy level by switching the external 

stimulus to four different values.

Any changes in the external stimulus can modify the excitability of the neuron, the firing 

patterns are adjusted accompanying distinct transition in the Hamilton energy. Under 

quiescent state, the Hamilton energy is kept as a lower constant. During mode transition 

from spiking to bursting and chaotic patterns, the amplitude of Hamilton energy is 

decreased because of continuous dense firings. Indeed, the deterministic neuron model 

keeps distinct firing mode in neural activities when external stimulus and parameters 

are fixed, and then external stimulus is selected with some constants to detect the 

changes in the membrane potential in Fig.3.
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Fig.3 Sampled time series for membrane potential in an isolated neuron under constant forcing. The 

parameters are fixed at a=1, b=3, c=1, d=5, r=0.006, s=4, λ=−1.6.

That is, firing modes show distinct transition by applying an external excitation of 

various strengths, and thus periodic stimulus is effective to raise various firing modes. It 

is important to discern the energy consumption within each time unit by calculating the 

average power when external stimulus is fixed at different values. dH/dτ is estimated 

within certain transient period and the firing patterns are also plotted in Fig.4 by 

applying suitable forcing currents.

Fig.4 (a) Dependence of average energy consumption per unit time <dH/dτ> and (b) average Hamilton energy 

in single neuron by applying constant stimulus.

 The firing modes in neuronal membrane potential are dependent on the external 

excitation, and four distinct steps are found in the curve for average power in an 

isolated neuron. In presence of quiescent state, the average energy consumption is kept 

lower value, and spiking patterns requires higher energy consumption in the neuron. 

From bursting to chaotic state and multiple modes, energy consumption is further 

increased. As shown in Eq.(7), any changes for parameter s(=S) has distinct impact on 

the Hamilton energy, and then the bifurcation analysis and evolution of energy and 

average power are estimated in Fig.5.
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Fig.5 Bifurcation of ISI (interspike interval) and evolution of average power and Hamilton energy are 

simulated by changing parameter c or s. For (a1, a2, a3) s=4; (b1, b2, b3) c=1, and other parameters are fixed 

at a=1, b=3, d=5, r=0.006, λ=−1.6, I=1.5.

From Fig.5, it is demonstrated that firing modes can be controlled by the intrinsic 

parameters (s, c), the average power shows distinct levels, in particular, the Hamilton 

energy for the neuron also shows distinct level transition by changing the parameter s. 

Furthermore, bifurcation is simulated by taking distinct values for parameter s during 

the changes of external stimulus I, and the results are plotted in Fig.6.

Fig.6 Bifurcation of ISI is simulated by changing external stimulus I. For (a) s=2 ; (b) s=3; (c) s=5; (d) s=6, 

and the other parameters are fixed at a=1, b=3, c=1, d=5, r=0.006, λ=−1.6.
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It is confirmed that shift of parameter s can induce similar discharge pattern in the 

neural activities. Furthermore, both external stimulus and parameter c are adjusted to 

detect the changes in the membrane potentials in Fig.7.

Fig.7 (a) External stimulus in periodic form I, (b) sampled time series for membrane potenital, (c) parameter 

shift s and (d) evolution of membrane potential. (a) I=sin0.001τ+2.2; (b) I=sin0.001τ+2.2, s=4.0; (c)(d) 

I=sin0.001τ+2.2, s=3.0 (I≤1.57); s= 3.9 (1.57<I≤1.92); s= 4.2 (1.92<I≤2.94); s= 4.8 (I>2.94).

As presented in Fig.7(a, b), transition in firing modes is controlled by the periodical 

stimulus without parameter shift. That is, external stimulus is fluctuated within large 

range and energy injection is adjusted to induce jumping between different energy 

levels. From Fig.7(c, d), parameter shift is considered when neuron is excited by 

periodic current, and fast mode transition is suppressed to keep each kind of firing mode 

within certain period. That is, appropriate parameter shift is helpful to prevent fast 

pattern transition in neuron membrane potential and the average Hamilton energy and 

average power will not be fluctuated sharply when external stimulus is changed within 

large range. It is interesting to discern the energy changes and transition in average 

power in neuron accompanying parameter shift under periodic stimulus, and the results 

are plotted in Fig.8.
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Fig.8 (a) Mode transition in the firing patterns for membrane potentials and changes in parameter s. (b) 

Evolution of Hamilton energy and power (c) in presence of periodic stimulus and parameter shift. I=sin 

0.001τ+2.2, s= 3.5 (I≤1.57), s= 2.5 (1.57<I≤1.92), s= 4.5 (1.92<I≤2.94), s= 6.5 (I>2.94), and the parameters 

are fixed a=1, b=3, c=1, d=5, r=0.006, λ=−1.6.

From Fig.8, changes in external stimulus are continued but the firing modes are kept 

stable by regulating the parameter s in appropriate way. Therefore, the Hamilton energy 

is kept the same oscillatory mode within certain period by taming the parameter 

synchronously. The firing modes in neuron membrane potential show distinct transition, 

and firing modes kept stable by adjusting the parameter carefully even the external 

stimulus is changed continuously.

In a summary, selection of each firing mode is mainly controlled by its intrinsic energy 

level and external stimulus can break the stability of energy level because of external 

energy injection. It needs enough energy absorption when neuron is jumped from a 

lower energy level to a higher energy level, and the surplus energy will induce shape 

deformation accompanying with appropriate parameter shift. In this way, it prevents 

frequently jumping between different energy levels and mode transitions in electrical 

activities. Therefore, each firing mode can keeps stable within certain transient period. 

Therefore, maximal energy absorption from external stimulus is realized and neuron 

select the most suitable firing mode by taming one or more intrinsic parameters 

synchronously, it accounts for the self-adaption property of biological neurons. When the 

energy level becomes stable, the firing mode also keeps stable. In particular, multiple 

firing patterns occur in the neural activities, and it is helpful for making decision in the 

nervous system. In most of the previous studies, the intrinsic parameters are suggested 

as constant even large external stimulus is applied, and the neuron based on the 

deterministic models have to sole firing modes, and the occurrence of multiple firing 

modes emerge only when external stimulus are changed in large range or activating 

noisy disturbance. Our results clarified the physical mechanism for inducting multiple 

modes in electrical activities in these deterministic neuron models. It also indicates that 

jumping between energy levels occurs under specific physical condition by capturing 

enough energy from external stimulus, and the surplus energy is encoded by trigger 

possible parameter shift, which explains the dependence of equivalent transmembrane 
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current on some intrinsic parameters in the neuron. From dynamical approach, readers 

can define I=I(s) or s=s(I) in special form and these deterministic neuron models can be 

excited to present multiple firing modes. In particular, similar parameter-dependent 

external stimulus can be defined to explain the bifurcation mechanism in 

Hindmarsh-Rose and similar neuron models, and the theoretical analysis is consistent 

with experimental results [61, 62].

4 Conclusions

Based on the deterministic Hindmarsh-Rose neuron mode, Hamilton energy is defined 

and estimated by using Helmholtz theorem. The dependence of pattern selection and 

energy level on external excitations is discussed in detail. Continuous change and 

increase of the external excitations can induce distinct firing modes in neuron 

membrane potential; in particular, the average energy consumption (power) in per time 

unit shows four distinct levels. When external stimulus is fixed, bifurcation of ISI 

confirmed that energy level can be switched by taming one of the bifurcation 

parameters. We claimed that continuous energy injection from external stimulus/stimuli 

can induce parameter shift in the neuron model because of energy accommodation as 

p=p(I), which one of the parameter p is independent on the power from the external 

stimulus I. As a result, the neuron will jump to next energy level under parameter shift 

and appropriate firing mode is triggered. Furthermore, time-varying stimulus with large 

fluctuation will induce another jump between energy levels and a different firing mode 

is developed, therefore, the neural activities will show multiple firing modes with time in 

this deterministic neuron model. Our results confirmed that this firing mode in neuron 

membrane potential is mainly dependent on the energy level, and enough energy 

injection from external stimulus will induce jump of energy levels and thus mode 

transition is induced in the neural activities.
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