1 Sorensen, M. & Pershagen, G. Transportation noise linked to cardiovascular disease independent from air pollution. Eur. Heart J. 40, 604-606 (2019).
2 Sohrabi, S. & Khreis, H. Burden of disease from transportation noise and motor vehicle crashes: Analysis of data from houston, texas. Environ. Int. 136, 105520 (2020).
3 Chadha, S., Lopez, L., Agarwal, P. & Ambett, R. Global costs of unaddressed hearing loss and costs-effectiveness of interventions. A WHO Report (2017).
4 Kalauni, K. & Pawar, S. J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J. Porous Mat. 26, 1795-1819 (2019).
5 Dunne, R., Desai, D. & Sadiku, R. A review of the factors that influence sound absorption and the available empirical models for fibrous materials. Acoust. Aust. 45, 453-469 (2017).
6 Soltani, P., Azimian, M., Wiegmann, A. & Zarrebini, M. Experimental and computational analysis of sound absorption behavior in needled nonwovens. J. Sound Vib. 426, 1-18 (2018).
7 Tang, X. N. & Yan, X. Acoustic energy absorption properties of fibrous materials: A review. Compos. Part A 101, 360-380 (2017).
8 Cao, L. T., Fu, Q. X., Si, Y., Ding, B. & Yu, J. Y. Porous materials for sound absorption. Compos. Commun. 10, 25-35 (2018).
9 Zong, D. et al. Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Str. 1, 2000004 (2020).
10 Lyu, L. et al. Sound absorption properties of multi-layer structural composite materials based on waste corn husk fibers. J. Eng. Fiber. Fabr. 15, 1-8 (2020).
11 Cao, L., Si, Y., Yin, X., Yu, J. & Ding, B. Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption. ACS Appl. Mater. Inter. 11, 35333-35342 (2019).
12 Jia, C. et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11, 3732 (2020).
13 Nine, M. J. et al. Graphene oxide-based lamella network for enhanced sound absorption. Adv. Funct. Mater. 27, 1703820 (2017).
14 Pinto, S. C. et al. Multifunctional hybrid structures made of open-cell aluminum foam impregnated with cellulose/graphene nanocomposites. Carbohyd. Polym. 238, 116197 (2020).
15 Lu, B. et al. High performance broadband acoustic absorption and sound sensing of a bubbled graphene monolith. J. Mater. Chem. A 7, 11423-11429 (2019).
16 Liu, L. et al. A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption. Soft Matter 15, 2269-2276 (2019).
17 Zhang, S. et al. Highly efficient, transparent, and multifunctional air filters using self-assembled 2D nanoarchitectured fibrous networks. ACS Nano 13, 13501-13512 (2019).
18 Zhang, S. et al. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Adv. Mater. 32, 2002361 (2020).
19 Si, Y., Yu, J., Tang, X., Ge, J. & Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014).
20 Si, Y., Wang, X., Dou, L., Yu, J. & Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018).
21 Zhang, S. et al. Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat. Commun. 10, 1458 (2019).
22 Zhang, S., Liu, H., Yu, J., Li, B. & Ding, B. Multi-functional flexible 2D carbon nanostructured networks. Nat. Commun. 11, 5134 (2020).
23 Ding, J. et al. Electrospun polymer biomaterials. Prog. Polym. Sci. 90, 1-34 (2019).
24 Ding, Y. et al. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv. Funct. Mater. 29, 1802852 (2019).
25 Jiang, S., Agarwal, S. & Greiner, A. Low-density open cellular sponges as functional materials. Angew. Chem. Int. Ed. 56, 15520-15538 (2017).
26 Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 119, 5298-5415 (2019).
27 Cao, L. et al. Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale 11, 2289-2298 (2019).
28 He, C. et al. Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials. ACS Sustain. Chem. Eng. 6, 927-936 (2018).
29 Wang, C. et al. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal insulation. Sci. Rep.-UK 6, 32383 (2016).
30 Dong, X., Cao, L., Si, Y., Ding, B. & Deng, H. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32, 1908269 (2020).
31 Shabangoli, Y. et al. Nile blue functionalized graphene aerogel as a pseudocapacitive negative electrode material across the full PH range. ACS Nano 13, 12567-12576 (2019).
32 Wang, C. H. et al. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12, 5816-5825 (2018).
33 Kim, Y. et al. Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J. Mater. Chem. A 2, 6976-6986 (2014).
34 Zhou, L. J. & Xu, Z. Y. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J. Hazard. Mater. 388, 121804 (2020).
35 Jiang, Y. Q. et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28, 1707024 (2018).
36 Cao, X., Zhang, J., Chen, S., Varley, R. J. & Pan, K. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 30, 2003618 (2020).
37 Sun, H., Xu, Z. & Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554-2560 (2013).
38 Xu, X. et al. Naturally dried graphene aerogels with superelasticity and tunable poisson's ratio. Adv. Mater. 28, 9223-9230 (2016).
39 Yang, L. et al. Graphene oxide glue-electrode for fabrication of vertical, elastic, conductive columns. ACS Nano 11, 2944-2951 (2017).
40 Ma, Q., Zhu, X., Zhang, D. & Liu, S. Graphene oxide - a surprisingly good nucleation seed and adhesion promotion agent for one-step ZnO lithography and optoelectronic applications. J. Mater. Chem. C 2, 8956-8961 (2014).
41 Xia, Q. et al. Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. J. Power Sources 180, 602-606 (2008).
42 Si, Y. et al. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512-9518 (2016).
43 Si, Y. et al. Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity. Adv. Mater. 29, 1700339 (2017).
44 Dou, L. et al. Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30, 2005928 (2020).
45 Kim, K. H., Oh, Y. & Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 7, 562-566 (2012).
46 Qiu, L., Liu, J. Z., Chang, S. L. Y., Wu, Y. & Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012).
47 Li, K., Gao, X. L. & Roy, A. K. Micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and Castigliano's second theorem. Compos. Sci. Technol. 63, 1769-1781 (2003).
48 Fu, Q. et al. Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv. Funct. Mater. 29, 1808234 (2019).
49 Wang, F. et al. Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 14, 8975-8984 (2020).
50 Guo, F. et al. Millisecond response of shape memory polymer nanocomposite aerogel powered by stretchable graphene framework. ACS Nano 13, 5549-5558 (2019).
51 Ma, Y. N. et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209-3216 (2018).
52 Pekala, R. W., Alviso, C. T. & Lemay, J. D. Organic aerogels: microstructural dependence of mechanical properties in compression. J. Non-Cryst. Solids 125, 67-75 (1990).
53 Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373-1377 (2014).
54 Worsley, M. A., Kucheyev, S. O., Satcher, J. H., Hamza, A. V. & Baumann, T. F. Mechanically robust and electrically conductive carbon nanotube foams. Appl. Phys. Lett. 94, 073115 (2009).
55 Wang, F. et al. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59, 8285-8292 (2020).
56 Zhang, X. et al. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 14, 15616-15625 (2020).
57 Berardi, U. & Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 94, 840-852 (2015).
58 Wang, D., Peng, L. M., Fu, F., Liu, M. H. & Song, B. Q. Analysis of polyester/wood composite fiber needling mat sound absorption performance. Polym. Composite. 39, 3823-3830 (2018).
59 Xie, S. C., Yang, S. C., Yang, C. X. & Wang, D. Sound absorption performance of a filled honeycomb composite structure. Appl. Acoust. 162, 107202 (2020).
60 Li, T. T. et al. Sound absorption and compressive property of PU foam-filled composite sandwiches: Effects of needle-punched fabric structure, porous structure, and fabric-foam interface. Polym. Adv. Technol. 31, 451-460 (2020).
61 Yang, X. et al. A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells. Compos. Sci. Technol. 118, 276-283 (2015).
62 Liu, Y., Lyu, L., Guo, J. & Wang, Y. Sound absorption performance of the poplar seed fiber/PCL composite materials. Materials 13, 1465 (2020).
63 Buratti, C., Merli, F. & Moretti, E. Aerogel-based materials for building applications: Influence of granule size on thermal and acoustic performance. Energ. Buildings 152, 472-482 (2017).
64 Koons, G. L., Diba, M. & Mikos, A. G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584-603 (2020).