1 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25, 3389-3402, doi:10.1093/nar/25.17.3389 (1997).
2 Zimmermann, L. et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol430, 2237-2243, doi:10.1016/j.jmb.2017.12.007 (2018).
3 Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature577, 706-710, doi:10.1038/s41586-019-1923-7 (2020).
4 Xu, J. Distance-based protein folding powered by deep learning. Proceedings of the National Academy of Sciences116, 16856-16865, doi:10.1073/pnas.1821309116 (2019).
5 Greener, J. G., Kandathil, S. M. & Jones, D. T. Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints. Nature Communications10, 3977, doi:10.1038/s41467-019-11994-0 (2019).
6 Yang, J. et al. Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences117, 1496-1503, doi:10.1073/pnas.1914677117 (2020).
7 Chen, C., Wu, T., Guo, Z. & Cheng, J. Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction. bioRxiv, 2020.2009.2004.283937, doi:10.1101/2020.09.04.283937 (2020).
8 John Jumper, R. E., Alexander Pritzel, Tim Green, Michael Figurnov, Kathryn Tunyasuvunakool, Olaf Ronneberger, Russ Bates, Augustin Žídek, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Anna Potapenko, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Martin Steinegger, Michalina Pacholska, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli, Demis Hassabis. High Accuracy Protein Structure Prediction Using Deep Learning. Unpublished manuscript
9 Hou, J., Wu, T., Cao, R. & Cheng, J. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Proteins: Structure, Function, and Bioinformatics87, 1165-1178, doi:https://doi.org/10.1002/prot.25697 (2019).
10 Wu, T., Guo, Z., Hou, J. & Cheng, J. DeepDist: real-value inter-residue distance prediction with deep residual convolutional network. BMC Bioinformatics22, 30, doi:10.1186/s12859-021-03960-9 (2021).
11 Adhikari, B. & Cheng, J. CONFOLD2: improved contact-driven ab initio protein structure modeling. BMC Bioinformatics19, 22, doi:10.1186/s12859-018-2032-6 (2018).
12 Zemla, A. LGA: A method for finding 3D similarities in protein structures. Nucleic acids research31, 3370-3374, doi:10.1093/nar/gkg571 (2003).
13 Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins57, 702-710, doi:10.1002/prot.20264 (2004).
14 Kinch, L. N., Li, W., Monastyrskyy, B., Kryshtafovych, A. & Grishin, N. V. Evaluation of free modeling targets in CASP11 and ROLL. Proteins84 Suppl 1, 51-66, doi:10.1002/prot.24973 (2016).
15 Cong, Q. et al. An automatic method for CASP9 free modeling structure prediction assessment. Bioinformatics (Oxford, England)27, 3371-3378, doi:10.1093/bioinformatics/btr572 (2011).
16 Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr66, 12-21, doi:10.1107/s0907444909042073 (2010).
17 Lisa Kinch, J. P., Dustin Schaeffer, Nick Grishin. CASP14 Tertiary Structure Prediction Assessment Topology (FM) Category. https://predictioncenter.org/casp14/doc/presentations/2020_11_30_Topology_assessment1_Kinch_Updated.pdf.
18 Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics20, 473, doi:10.1186/s12859-019-3019-7 (2019).
19 Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic acids research39, W29-W37, doi:10.1093/nar/gkr367 (2011).
20 Cheng, J. A multi-template combination algorithm for protein comparative modeling. BMC Structural Biology8, 18, doi:10.1186/1472-6807-8-18 (2008).
21 Cao, R., Wang, Z. & Cheng, J. Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment. BMC Structural Biology14, 13, doi:10.1186/1472-6807-14-13 (2014).
22 Webb, B. & Sali, A. Protein structure modeling with MODELLER. Methods Mol Biol1137, 1-15, doi:10.1007/978-1-4939-0366-5_1 (2014).
23 Sadreyev, R. & Grishin, N. COMPASS: A Tool for Comparison of Multiple Protein Alignments with Assessment of Statistical Significance. Journal of Molecular Biology326, 317-336, doi:https://doi.org/10.1016/S0022-2836(02)01371-2 (2003).
24 Xu, D., Jaroszewski, L., Li, Z. & Godzik, A. FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking. Bioinformatics30, 660-667, doi:10.1093/bioinformatics/btt578 (2013).
25 Hughey, R. & Krogh, A. SAM: SEQUENCE ALIGNMENT AND MODELING SOFTWARE SYSTEM. (University of California at Santa Cruz, 1995).
26 Madera, M. Profile Comparer: a program for scoring and aligning profile hidden Markov models. Bioinformatics24, 2630-2631, doi:10.1093/bioinformatics/btn504 (2008).
27 Källberg, M., Margaryan, G., Wang, S., Ma, J. & Xu, J. RaptorX server: A Resource for Template-Based Protein Structure Modeling. Methods in molecular biology (Clifton, N.J.)1137, 17-27, doi:10.1007/978-1-4939-0366-5_2 (2014).
28 Wu, S. & Zhang, Y. MUSTER: Improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins: Structure, Function, and Bioinformatics72, 547-556, doi:https://doi.org/10.1002/prot.21945 (2008).
29 Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols5, 725-738, doi:10.1038/nprot.2010.5 (2010).
30 Zhang, C., Zheng, W., Mortuza, S. M., Li, Y. & Zhang, Y. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics36, 2105-2112, doi:10.1093/bioinformatics/btz863 (2020).
31 Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Research45, D170-D176, doi:10.1093/nar/gkw1081 (2016).
32 Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Research48, D570-D578, doi:10.1093/nar/gkz1035 (2019).
33 Wu, T., Guo, Z., Hou, J. & Cheng, J. DeepDist: real-value inter-residue distance prediction with deep residual convolutional network. bioRxiv, 2020.2003.2017.995910, doi:10.1101/2020.03.17.995910 (2020).
34 DFOLD. https://github.com/jianlin-cheng/DFOLD.
35 Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nature Protocols2, 2728-2733, doi:10.1038/nprot.2007.406 (2007).
36 Wang, Z., Eickholt, J. & Cheng, J. APOLLO: a quality assessment service for single and multiple protein models. Bioinformatics (Oxford, England)27, 1715-1716, doi:10.1093/bioinformatics/btr268 (2011).
37 Karasikov, M., Pagès, G. & Grudinin, S. Smooth orientation-dependent scoring function for coarse-grained protein quality assessment. Bioinformatics35, 2801-2808, doi:10.1093/bioinformatics/bty1037 (2019).
38 https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf.
39 Xu, D., Jaroszewski, L., Li, Z. & Godzik, A. AIDA: ab initio domain assembly server. Nucleic Acids Res42, W308-313, doi:10.1093/nar/gku369 (2014).