1 Parent, D. C. & McElvany, S. W. Investigations of small carbon cluster-ion structures by reactions with hydrogen cyanide. J. Am. Chem. Soc. 111, 2393-2401 (1989).
2 Van Orden, A. & Saykally, R. J. Small carbon clusters: spectroscopy, structure, and energetics. Chem. Rev. 98, 2313-2357 (1998).
3 Grutter, M. et al. Electronic absorption spectra of linear C6, C8 and cyclic C10, C12 in neon matrices. J. Chem. Phys. 111, 7397-7401 (1999).
4 Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199-207 (1994).
5 Pitzer, K. S. & Clementi, E. Large molecules in carbon vapor. J. Am. Chem. Soc. 81, 4477-4485 (1959).
6 Parasuk, V., Almlof, J. & Feyereisen, M. W. The [18] all-carbon molecule: cumulene or polyacetylene? J. Am. Chem. Soc. 113, 1049-1050 (1991).
7 Torelli, T. & Mitas, L. Electron correlation in C4N+2 carbon rings: aromatic versus dimerized structures. Phys. Rev. Lett. 85, 1702-1705 (2000).
8 Arulmozhiraja, S. & Ohno, T. CCSD calculations on C14, C18, and C22 carbon clusters. J. Chem. Phys. 128, 114301 (2008).
9 Remya, K. & Suresh, C. H. Carbon rings: a DFT study on geometry, aromaticity, intermolecular carbon–carbon interactions and stability. RSC Advances 6, 44261-44271 (2016).
10 Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299-1301 (2019).
11 Scriven, L. M. et al. Synthesis of cyclo[18]carbon via debromination of C18Br6. J. Am. Chem. Soc. 142, 12921-12924 (2020).
12 Gao, Y. et al. On-surface synthesis of a doubly anti-aromatic carbon allotrope: cyclo[16]carbon. ChemRxiv (2023).
13 Sun, L. et al. Aromatic annular carbon allotropes: cumulenic cyclo[10]carbon and Peierls-transition-intermediate cyclo[14]carbon. Research Square (2023).
14 Baryshnikov, G. V., Valiev, R. R., Kuklin, A. V., Sundholm, D. & Agren, H. Cyclo[18]carbon: insight into electronic structure, aromaticity, and surface coupling. J. Phys. Chem. Lett. 10, 6701-6705 (2019).
15 Baryshnikov, G. V. et al. Aromaticity of even-number cyclo[n]carbons (n = 6-100). J. Phys. Chem. A 124, 10849-10855 (2020).
16 Charistos, N. D. & Muñoz-Castro, A. Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 22, 9240-9249 (2020).
17 Baryshnikov, G. V. et al. Odd-number cyclo[n]carbons sustaining alternating aromaticity. J. Phys. Chem. A 126, 2445-2452 (2022).
18 Brémond, E., Pérez-Jiménez, A. J., Adamo, C. & Sancho-García, J. C. Stability of the polyynic form of C18, C22, C26, and C30 nanorings: a challenge tackled by range-separated double-hybrid density functionals. Phys. Chem. Chem. Phys. 24, 4515-4525 (2022).
19 Li, M. et al. Potential molecular semiconductor devices: cyclo-Cn (n = 10 and 14) with higher stabilities and aromaticities than acknowledged cyclo-C18. Phys. Chem. Chem. Phys. 22, 4823-4831 (2020).
20 von Helden, G., Hsu, M.-T., Kemper, P. R. & Bowers, M. T. Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes. J. Chem. Phys. 95, 3835-3837 (1991).
21 von Helden, G., Gotts, N. G. & Bowers, M. T. Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature 363, 60-63 (1993).
22 Anderson, H. L., Patrick, C. W., Scriven, L. M. & Woltering, S. L. A short history of cyclocarbons. Bull. Chem. Soc. Jpn. 94, 798-811 (2021).
23 Jones, R. O. Density functional study of carbon clusters C2n (2⩽n⩽16). I. Structure and bonding in the neutral clusters. J. Chem. Phys. 110, 5189-5200 (1999).
24 Manna, D. & Martin, J. M. What are the ground state structures of C20 and C24? An explicitly correlated Ab Initio approach. J. Phys. Chem. A 120, 153-160 (2016).
25 Feyereisen, M., Gutowski, M., Simons, J. & Almlöf, J. Relative stabilities of fullerene, cumulene, and polyacetylene structures for Cn : n=18–60. J. Chem. Phys. 96, 2926-2932 (1992).
26 Prinzbach, H. et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407, 60-63 (2000).
27 Liu, M. et al. Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons. J. Phys. Chem. C 122, 9586-9592 (2018).
28 Jones, R. R. & Bergman, R. G. p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. J. Am. Chem. Soc. 94, 660-661 (1972).
29 Schuler, B. et al. Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220-224 (2016).
30 Wong, H. N. C., Garratt, P. J. & Sondheimer, F. Unsaturated eight-membered ring compounds. XI. Synthesis of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne and sym-dibenzo-1,3,5-cyclooctatrien-7-yne, presumably planar conjugated eight-membered ring compounds. J. Am. Chem. Soc. 96, 5604-5605 (1974).
31 Kawai, S. et al. An endergonic synthesis of single Sondheimer-Wong diyne by local probe chemistry. Angew. Chem. Int. Ed. 59, 10842-10847 (2020).
32 Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).