1 Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299-1301 (2019).
2 Scriven, L. M. et al. Synthesis of cyclo[18]carbon via debromination of C18Br6. J. Am. Chem. Soc. 142, 12921-12924 (2020).
3 Sun, L. et al. Aromatic annular carbon allotropes: cumulenic cyclo[10]carbon and Peierls-transition-intermediate cyclo[14]carbon. Research Square (2023).
4 Gao, Y. et al. On-surface synthesis of a doubly anti-aromatic carbon allotrope: cyclo[16]carbon. ChemRxiv (2023).
5 Parent, D. C. & McElvany, S. W. Investigations of small carbon cluster-ion structures by reactions with hydrogen cyanide. J. Am. Chem. Soc. 111, 2393-2401 (1989).
6 Van Orden, A. & Saykally, R. J. Small carbon clusters: spectroscopy, structure, and energetics. Chem. Rev. 98, 2313-2357 (1998).
7 Grutter, M. et al. Electronic absorption spectra of linear C6, C8 and cyclic C10, C12 in neon matrices. J. Chem. Phys. 111, 7397-7401 (1999).
8 Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199-207 (1994).
9 Pitzer, K. S. & Clementi, E. Large molecules in carbon vapor. J. Am. Chem. Soc. 81, 4477-4485 (1959).
10 Parasuk, V., Almlof, J. & Feyereisen, M. W. The [18] all-carbon molecule: cumulene or polyacetylene? J. Am. Chem. Soc. 113, 1049-1050 (1991).
11 Torelli, T. & Mitas, L. Electron correlation in C4N+2 carbon rings: aromatic versus dimerized structures. Phys. Rev. Lett. 85, 1702-1705 (2000).
12 Arulmozhiraja, S. & Ohno, T. CCSD calculations on C14, C18, and C22 carbon clusters. J. Chem. Phys. 128, 114301 (2008).
13 Remya, K. & Suresh, C. H. Carbon rings: a DFT study on geometry, aromaticity, intermolecular carbon–carbon interactions and stability. RSC Advances 6, 44261-44271 (2016).
14 Baryshnikov, G. V., Valiev, R. R., Kuklin, A. V., Sundholm, D. & Agren, H. Cyclo[18]carbon: insight into electronic structure, aromaticity, and surface coupling. J. Phys. Chem. Lett. 10, 6701-6705 (2019).
15 Baryshnikov, G. V. et al. Aromaticity of even-number cyclo[n]carbons (n = 6-100). J. Phys. Chem. A 124, 10849-10855 (2020).
16 Charistos, N. D. & Muñoz-Castro, A. Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 22, 9240-9249 (2020).
17 Baryshnikov, G. V. et al. Odd-number cyclo[n]carbons sustaining alternating aromaticity. J. Phys. Chem. A 126, 2445-2452 (2022).
18 Brémond, E., Pérez-Jiménez, A. J., Adamo, C. & Sancho-García, J. C. Stability of the polyynic form of C18, C22, C26, and C30 nanorings: a challenge tackled by range-separated double-hybrid density functionals. Phys. Chem. Chem. Phys. 24, 4515-4525 (2022).
19 Li, M. et al. Potential molecular semiconductor devices: cyclo-Cn (n = 10 and 14) with higher stabilities and aromaticities than acknowledged cyclo-C18. Phys. Chem. Chem. Phys. 22, 4823-4831 (2020).
20 Diederich, F. et al. All-carbon molecules: evidence for the generation of cyclo[18]carbon from a stable organic precursor. Science 245, 1088-1090 (1989).
21 Schleyer, P. V., Jiao, H. J., Glukhovtsev, M. N., Chandrasekhar, J. & Kraka, E. Double aromaticity in the 3,5-dehydrophenyl cation and in cyclo[6]carbon. J. Am. Chem. Soc. 116, 10129-10134 (1994).
22 Fowler, P. W., Mizoguchi, N., Bean, D. E. & Havenith, R. W. Double aromaticity and ring currents in all-carbon rings. Chemistry 15, 6964-6972 (2009).
23 Hutter, J., Lüthi, H. P. & Diederich, F. Structures and vibrational frequencies of the carbon molecules C2-C18 calculated by density functional theory. J. Am. Chem. Soc. 116, 750-756 (1994).
24 Bylaska, E. J., Kawai, R. & Weare, J. H. From small to large behavior: The transition from the aromatic to the Peierls regime in carbon rings. J. Chem. Phys. 113, 6096-6106 (2000).
25 Hoffmann, R. Extended hückel theory—v : Cumulenes, polyenes, polyacetylenes and cn. Tetrahedron 22, 521-538 (1966).
26 Ohno, K. Quantum chemical exploration of conversion pathways and isomeric structures of C16 molecules. Chem. Phys. Lett. 711, 60-65 (2018).
27 Pavliček, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623-628 (2015).
28 Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853-858 (2018).
29 Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).
30 Belau, L. et al. Ionization thresholds of small carbon clusters: tunable VUV experiments and theory. J. Am. Chem. Soc. 129, 10229-10243 (2007).
31 Wang, S. L., Rittby, C. M. L. & Graham, W. R. M. Detection of cyclic carbon clusters. I. Isotopic study of the ν4(e′) mode of cyclic C6 in solid Ar. J. Chem. Phys. 107, 6032-6037 (1997).
32 Martin, J. M. L. & Taylor, P. R. Structure and vibrations of small carbon clusters from coupled-cluster calculations. J. Phys. Chem. 100, 6047-6056 (1996).
33 Fulara, J., Riaplov, E., Batalov, A., Shnitko, I. & Maier, J. P. Electronic and infrared absorption spectra of linear and cyclic C6+ in a neon matrix. J. Chem. Phys. 120, 7520-7525 (2004).
34 Brito, B. G. A., Hai, G. Q. & Cândido, L. Quantum Monte Carlo study on the structures and energetics of cyclic and linear carbon clusters Cn (n = 1,...,10). Phys. Rev. A 98, 062508 (2018).
35 Manna, D. & Martin, J. M. What are the ground state structures of C20 and C24? An explicitly correlated Ab Initio approach. J. Phys. Chem. A 120, 153-160 (2016).