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Abstract

A key function of wireless sensor networks (WSN) is data collection. Due to the hot spot issue and 
the limited energy supply, developing data gathering techniques is complicated. The WSN faces three 
main challenges: security, data routing, and processing a lot of data. Since compressive sensing can 
achieve simultaneous sampling and compression, it is widely used in signal processing technique. Due 
to resource limitations and computational limitations, WSN security solutions are different from those 
in traditional networks.  Compressive sensing (CS) and Elliptical curve Diffie-Hellman key exchange 
are used to solve these problems. The measurement matrix is configured to be as a public key that is 
understood by both the sensor node and the base station in order to achieve high safety and efficiency 
for data gathering in wireless sensor networks. Security and effective data collecting are the main 
study goals. A prime-numbered address strategy for TPID (tree path identifier) routing and cluster 
head selection is used. Comparison between seven types of CS algorithms is introduced over different 
data sparsity levels. The network parameters is being tested are Network life time, throughput, 
residual node energy and total energy dissipated. The results revels that the compression system can 
reduce the size of the transmitted data and consequently the energy consumption while still maintains 
the data security.

Keywords: Wireless sensor networks, Security, Elliptic-Curve-Diffie-Hellman, PMLEACH routing, 
Elliptic curve cryptography.

I. INTRODUCTION

There are many WSNs based on Cs applications has been somewhat studied, includes: - imaging, 
video processing, cognitive radio networks, machine type communications, radar signal processing. In 
communication systems, physical layer operations include, channel estimation in wireless networks 
and channel estimation in power line communication [1]. 

Two basic categories of encryption algorithms exist. One is based on private keys, while the other is 
based on public keys. Irrespective increased security provided by public-key based encryption 
techniques (such as ECC, RSA, etc.); they are not favored for usage on resource-constrained WSN 
devices [2, 3]. The private key-based encryption techniques (such as AES, DES, etc.) don't require a lot 
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of compute or memory, but they do demand that the keys be pre-stored on nodes that are vulnerable to 
attack when left in unguarded situations [4-6]. 

II. LITERATURE REVIEW

Encryption mechanisms, including ECC and Diffie-Hellman, have been proposed for effective key 
management and distribution in WSNs [7]. Key pre-distribution techniques [8] conserve energy and 
offer scalable storage capacity and efficiency. Approaches employing symmetric keys, such as 
Lightweight security scheme [9] and hierarchical clustered WSNs [10] enhance security, scalability, 
and energy consumption. However, identical CS matrices generated by the BS and sensor nodes in 
each round may be vulnerable to Known Plain-text Attacks [11]. Although these methods have shown 
success in ensuring data privacy and security, their high computational complexity makes them less 
suitable for low-power and limited-storage sensor nodes.

A lot of work has been proposed by utilizing CS as a security scheme regardless of its security 
degree to achieve data privacy, security, energy and efficiency [12-16]. 

A CS-based security approach for data collecting (SeDC) is proposed in [17], where the authors 
used compressive sensing across limited fields to lower the cost of data gathering and public key 
encryption to address the issue of key distribution. The similarity between CS and lattices is 
investigated. The network lifetime is reduced, though; if additional calculations, such as encryption 
and compression, are performed at each node (they are computationally demanding operations.). 
Cipher-text attack and plain-text attack are analyzed under two different scenarios.  Authors in [18] 
proposed with the objective to improve the performance of CDG by utilizing Even-Rodeh codes and 
ElGamal algorithm to compress and secure the data respectively. The compression ratio and space 
savings are the variables that are being investigated. Data security is provided via El-Gamal algorithm; 
however the size of data from the El-Gamal encryption process is amplified and the difficulty of solving 
the discrete algorithm is introduced. 

 In [19] a routing protocol for load balancing and QoS enhancement is proposed. WSN face 
security challenges based on CS encryption scheme such as Brute Force Attack, Fault Injection 
Attacks, Side-Channel Attacks, and Invalid Curve Attacks. To address these issues and achieve secure 
data collection, researchers have explored various approaches. Compressive sensing (CS)-based 
systems combining compression and encryption have been used to lower data gathering costs and 
improve network performance [20].  The remainder of this paper is structured as follows. The 
background knowledge is introduced in Section III .The proposed scheme is introduced in Section IV. 
Section V is an experimental result. Section VI is a conclusion.

III. BACKGROUND

A. CS background

Compressive sensing (CS) avoids traditional transforms for compression. It maps high-dimensional 
signals to lower-dimensional domains via random sampling. Reconstruction of the original signal is 
possible from compressed data. Fourier and wavelet transforms, although not the main focus, are 
relevant for CS. Hence, a brief overview of sparsity and signals is valuable.

If the sparse signal is projected on an appropriate basis, natural signals like music, images, or 
seismic data can be stored in compressed form. Many projection coefficients are zero or small enough 

to be neglected when the domain (basis) is properly set. A signal is considered to be h-Sparse if it only 

contains h non-zero coefficients. Signal is referred to as compressible if a high number of projection 

coefficients are tiny enough to be neglected. If there are orthogonal bases provided by (ψ1,ψ2,ψ3,……..

ψN), we can express x as a k sparse signal in ψ  as in equation (1). 

x =  ψk       (1)

If  x ∈ RN describes the sparse signal to be detected, In the CS framework, compression of x is 
performed using the following linear operation:

[y]M×1 =  [Φ]M×N[x]N×1      (2)

[y]: The compressed signal 

[x]: The signal vector to be compressed



[Φ]: Projection or measurement matrix of 

y =  Φx = ΦΨk = Θk     (3)

It is possible to reconstruct x under certain conditions on the measurement matrix Φ if x is 
sufficiently sparse. The first natural solution is to solve the following optimization problem.

min ∥ x ∥ 0  s.t. y =  Φx               (4)

Unfortunately, this l0-norm minimization problem is generally computationally complex. In order to 
approximately solve (4), several approaches have been proposed. . The Convex Relaxation algorithms,  
Greedy algorithms,  Iterative Thresholding Algorithms ,Combinatorial/ Sublinear Algorithms , Non-
convex Optimization category , Bayesian algorithms, and  Bregman iterative algorithms [21] .

B. Elliptic Curve Diffie–Hellman background

In cryptography, a key is a sequence of characters utilized in an encryption/decryption algorithm to 
transform data in such a way that it appears random [22]. 

The Elliptic Curve Diffie-Hellman (ECDH) Key Exchange is a key agreement scheme that enables 
two parties, each possessing an elliptic-curve, to establish a shared secret over an insecure channel. 

ECDH uses algebraic curves over finite field Fp
 to generate keys to be used by the parties. Also, 

both parties need to agree on an elliptic curve beforehand. In mathematics, an elliptic curve can be 

described as a plane algebraic curve is given by an equation of the form  Ep(a,b): 

y2 =  x3 +  ax +  b   mod(p)

4a3 + 27b2 ≠  0, This ensures that the curve's graph is non-singular, and thus a tangent line can be 
identified at every point, which is important for point duplication. Figure (1) shows what a real elliptic 

curve looks likeEp( - 2,2):

Fig.1. Elliptic Curve

ECC offers a comparable level of cryptography like RSA but with noticeable reduced key size. The 
discrete logarithm problem (DLP) for an Elliptic curve is defined as for two points Q1 and Q2on eliptic 

curve surface to find a positive integer n ,such that Q2 = n * Q1.n Represent the private key. It is 
important to note that certain elliptic curves are considered more secure than others, and therefore 
the selection should be made with caution and based on established security criteria. Elliptical curve 
cryptography (ECC) has three uses: digital signature (ECDSA), encryption (ECC) and key exchange 
(EC-DH).

ECDH is an asymmetric encryption algorithm used for key sharing. The key pairs consisting of a 
private key and a public key are utilized. The public key is distributed openly, while the private key 
must remain confidential. ECDH operates by multiplying the private key with the public key of 
another party to generate a shared key, which is then employed for symmetric encryption.To 
illustrate how this works, This scenario can be explained as follow:

Ax and Bx must first agree on a certain Elliptic Curve Ep(a,b), a prime p, and point on curve G; 

;G ∈  Ep(a,b): .

฀ Ax selects a secret value an ''α'', computes A =  α G, and sends A to Bx.

https://en.wikipedia.org/wiki/Algebraic_curve
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Plane_algebraic_curve


฀ Bx also selects a secret value ''β'', calculates B =  βG, and sends B to Ax.

฀ Ax then calculates the public key =  αB to determine the Diffie-Hellman Key, and Bx  does the 

same βA
Ax's key is = αB = α (βG) =  β(αG)  = βA=Bx's key. both Ax and Bx end up with the same key .all the 

above calculation is calculated in mod(p).

ECC is the encryption algorithm used at each cluster head.First compute the public key:

 Epu = EprG.Second the message encryption using   Epu . Let M be the message aggregated by CH. 

This message needs to be represented on the curve. Then, select q randomly from 0 < q < p - 1. So the 
encrypted message is 

Y = [c1,c2] = [q * G,M + (q * Epu)]     (5)

Third and finally message decryption 

M = [c2 - Eprc1]  (6)

C. WSN structure:

A WSN is made up of spatially dispersed sensors and one or more base station (also known as sink 
node). Sensors monitor physical factors such as temperature, vibration, or motion in real time and 
generate sensory data. A sensor node can act as both a data source and a data router. A sink, on the 
other hand, gathers information from sensors. In an event monitoring application, for example, sensors 
must communicate data to the base station (s) when they identify the occurrence of events of interest. 
WSN deployment can be mesh type or star type or tree types are mainly adopted.  Tree structure has 
many advantages like solving hot spot problem.    Figure (2) depicts tree WSN architecture.  

Wireless data transmission through insecure channels makes it relatively simple for an attacker to 
listen in on the conversation. As a result, the primary issues for WSNs are security and energy 
conservation. Security can be improved by encrypting the data sent between sensor nodes and the BS. 
The CS compression and reconstruction processes can be paralleled to encryption and decryption, 
respectively; as a result, data compression and encryption are carried out concurrently, which 
increases energy efficiency.

Fig.2. WSN Structure



IV. SYSTEM MODEL

A. Two challenge scenarios

฀ If each node generates two keys, namely the public key and the private key, the node can share its 
public key with others for communication purposes, while the private key is used for decryption. 
However, this process is computationally intensive and requires a significant amount of energy. 
Therefore, it is not a suitable solution to be applied on low-powered WSN devices.

฀ If the Base Station (BS) generates both the public and private keys and transmits the public key to 
the entire network, each node can use it to encrypt its data. However, when it comes to data 
aggregation at the Cluster Head (CH), the CH needs to decrypt the data, perform aggregation, and 
encrypt it again for transmission to the BS. This process results in increased energy consumption for 
the CHs and requires the CHs to possess the private key. This poses security concerns as the use of a 
public-key algorithm in this manner becomes insecure.

B. The challenges are solutions

฀ The integration of Compressed Sensing (CS) method, which combines encryption and compression, 
with Elliptic-curve cryptography (a public key algorithm) allows CS to address the aggregation issue 
without the need for the private key at the Cluster Head (CH) side.

฀ An EC-DH key sharing method is introduced to solve the CS-Encryption key distribution problem, 
enabling secure exchange of a pseudo-random key between the Base Station (BS) and nodes in a 
straightforward manner.

฀ A novel method is introduced to enhance the security of the CS scheme by safeguarding it against 
potential security attacks.

C. The proposed scheme stages

 The proposed scheme encompasses three main stages: Setup, Secure data gathering and Data 
reconstruction stage. In the Setup stage, efficient clustering and routing trees are established by 
leveraging the properties of prime numbers to minimize power consumption during data transmission. 
The Secure data gathering stage utilizes a Compressive Sensing (CS) based method for data 
compression and encryption. Lastly, Data reconstruction stage introduces a proficient reconstruction 
algorithm that effectively recovers the original sensor data from the compressed samples, thereby 
enhancing the data reconstruction process.

1) Setup

The proposed scheme leverages the principles of prime numbers theory to establish a routing tree 
that enables multi-hop routing from Cluster Heads (CHs) to the Base Station (BS), thereby enhancing 
the power efficiency of Wireless Sensor Networks (WSNs). The process of CH selection and cluster 
creation in the proposed scheme is as follows:

Each node in the network is assigned a prime-numbered address, and the paths in the routing tree 
are identified using Tree Path Identifiers (TPIDs). A TPID is obtained by multiplying the node 
addresses along the path, resulting in a unique ID for each path based on the prime addresses of the 
nodes. By decomposing the TPID, each node along the path can be identified, and each node can 
determine its own path based on its TPID. This approach ensures that each path is uniquely identified 
and facilitates efficient routing within the network.

Prime number based Modified Leach algorithm (called PMLEACH) is used for CH selection and 
cluster creation. PMLEACH is an improved algorithm with the aim to achieve equitable distribution of 
expended energy in the WSN [23]. The CH election and cluster creation process of PMLEACH is as 
explained below:

CH Election and Cluster Formation 

In the initial round, nodes randomly generate numbers compared to a threshold T. Nodes with 
numbers below T become members, while those above T become cluster head (CH) nodes. In 
subsequent rounds, an energy model considers factors such as distance to the base station (BS) and 
residual energy parameters. It is important to differentiate nodes based on distance and energy for 
energy expenditure and network lifetime. A new cost function is implemented to manage these factors 
effectively.



Cluster formation begins as follows: Every normal (non-CH) node s join the CH (CHi) that satisfies 
the two conditions: (1) the distance between node s and CHi is less than the distance between node s 
and BS (2) the distance between CHi and BS is less than the distance node s and BS. If the two 
conditions for the node s do not hold with any of the selected CHs, it selects the nearest CH from the 
selected CHs.

2) Secure Data Gathering stage

The first security stage is the CS-Encryption at each non-CH node is implemented by introducing 

EC-DH key sharing method that enables secure exchange of sensing matrix Φ seed between the Base 
Station (BS) and the non-CH node. The security of the CS based encryption technique is provided by 
the fact that an attacker cannot access the sensing matrix, which contains pseudo-random values 
generated by the exchange of CS keys (seed) between the each sensor node and the BS.

  The CS-based encryption method achieves the objectives of minimizing the amount of transmitted 
data and safeguarding the transmitted data against potential adversaries.

Second stage of security is between the CH and the base station, where each CH use the public key 
to encrypt all the received data from its node members.

The primary objective of this phase is to ensure the security of the sensor data transmitted among 
the cluster (CH), and the Base Station (BS). To accomplish this, the integration of ECC and the Elliptic 
Curve Diffie-Hellman (ECDH) public key algorithm is employed. 

At the Base Station (BS), two types of keys are generated: (i) CS-Matrix (seed) in the first round only 
and (ii) ECDH private and public keys for Cluster Heads (CHs). Firstly, for the CS-Key, the BS selects 
the most suitable choice, such as a Bernoulli or Gaussian distribution matrix. Pseudo-random number 
generation techniques require a starting point known as a seed, which can be initialized as  g0 at the 
BS and transmitted using EC-DH. By using identical seed values between a node and the BS, an 
identical random matrix Φ is generated for data encryption and decryption. However, the main 
drawback is that if an adversary successfully guesses the seed, they can produce the same matrix. The 
proposed technique aims to generate the seed reliably and make it difficult for attackers to guess. 
Subsequently, in further rounds, the seed generation at each sensor node and the BS is performed 
using the following equation.

           cn+1
=  bd *  cn * (1 - cn)     ;bd ≠ 0             (7)

In further rounds The BS generates public and private keys Epu , Epr as in ECDH and send the share 
key to each CH.

฀ The algorithm steps

Node Side:

฀ Each node i receive the seed value g0i 

฀ Each node i use the seed value to generates its Φi matrix and perform compression operation yi

 =  xi * Φi by equation (3)

฀ Each node i uses the seed to generate the secret value  si = g0i
-1.

฀ Each node i calculates the secure yi = yi * si    and then sends yi to its CHi.

CH Side:

฀ Each CH i aggregates its member nodes data Mi = y1 + y2 + y3 +……yr, where r equals the nodes 

count in the cluster  i.

฀ Each CH uses the public key Epui  to encrypt the aggregated data Mi  and output Yi by equation (5)

BS Side:

฀ The BS uses the private key Epri to decrypt the received data of each CHi  Yi and output Miby 

equation (6)

฀ BS calculates the secret value  si = g0i
-1and computes each node data individually.

฀ The BS uses the generated seed g0i and generates the associated CS matrix Φi.

฀ Finally, the BS recovers the actual data with the help of the agreed reconstruction algorithm by 
equation (4) 



3) Data reconstruction stage

This section compares seven sparse recovery algorithms. The Basis Pursuit algorithm represents 
Convex Relaxation, while Compressive Sampling Matching Pursuits, Subspace Pursuits, and 
Orthogonal Matching Pursuits represent greedy algorithms. Approximate Message Passing 
represents the iterative thresholding category. Bayesian via Relevance Vector Machine represents the 
Bayesian category. The Split Bregman iterative algorithm represents the Bregman iterative 
algorithms. Heavy Hitters on Steroids (HHS) and Iterative Re-weighted Least Squares were excluded 
from the simulation results due to their longer reconstruction process time, making them unsuitable 
for real-time WSN applications. 

V. PERFORMANCE EVALUATION

A WSN network of 100 sensor nodes is used for testing the performance of the proposed 

algorithms. The network nodes are randomly distributed through a network area of  A (200 m×200 
m). For fair comparison, the nodes locations are stored in order to apply all the proposed algorithms 
on the same network environment. Also the BS is located at a fixed location at the middle of the 
network area. During performance evaluation, the following network parameters are considered: 

฀ The network nodes are immobile and based on batteries with initial energy of 2 joules per node.

฀ Every node is assigned a prime-numbered address [23] and can be identified uniquely.

฀ Transmissions are assumed under ideal channel circumstances, and collision-free transmissions. 
The number of simulated rounds is 2000.

฀ The nodes gather a sparse signal (Signal Length=512) contains [0, spikes of 1] and deliver the 
gathered data to their relevant CH nodes. 

PMLEACH routing algorithm [23] is applied for organizing the network nodes into clusters, 
where each cluster has one CH and some of CMs. During each simulation round, the CMs of each 
cluster transmit their sensed data to their respective CH¸ which in turns aggregate the received data 
and then transmit the aggregated data to BS.  OMP algorithm that used for compressive sensing in 
[24] is also applied to the organized network and their response is compared with the proposed 
algorithms. The response of OMP algorithm and the different proposed algorithms is observed for 
different cases of sparsity lengths. The Compression performance metric is used for comparison of 
different algorithms behavior.  

฀ Compression ratio = output data size/input data size

฀ Compression performance =100*(1-Compression ratio)

Figure (3) illustrates the estimated MSE of the reconstructed data for different compression 
ratios of the applied CS based algorithms when the sparsity equals 50. The SBI based algorithm 
achieves the worst behavior compared to other algorithms as the reconstruction error increased 
largely for compression performance higher than 20 %. The BP algorithm enhances the performance 
greatly as it achieves the lowest MSE at compression performance of 62.5%. SP, AMP and CoSaMP 
algorithms achieve also performance close to BP one. The traditional OMP algorithm as shown 
achieve an acceptable MSE up to a compression performance of only 57.8 %.

The performance of the applied algorithms is evidenced as shown in Fig. (4) For a sparsity of 
100 bit with some noticed enhancement in the response of SBI algorithm that able to achieve an 
acceptable MSE for a slightly higher compression ratio of 33.7 %. For 100 bit sparsity, the behavior 
of OMP and BCS-RVM get worse as they can operate well up to only 37.9 %, 35.2% respectively. 
While the behavior of both AMP and BP achieves the best results as they can operate up to 44.5 % 
with an acceptable MSE value. SP and CoSaMP algorithms achieve almost equal compression 
performance 45.5%, 43.6% respectively .SP and CoSaMP algorithms as indicated by Fig. 3, 4 achieve 
an approximately the same behavior in low and moderate sparsity as they belong to the same 
category (Greedy algorithms) and have almost the same steps except in they are in different order. 
They apply a pruning process in different way. 



Another scenario is indicated in Fig. (5) For sparsity of 170 bit, the response of OMP 
algorithms behaves like BCS-RVM with the variation of the compression ratio. These algorithms 
achieve the worst response as they result in acceptable MSE value up to only a rate of compression 

Fig. 3 Mean Square error behavior for Sparsity 
equals 50 for different CS based algorithms.
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equals 100 for different CS based algorithms.

Fig.5 Mean Square error behavior for Sparsity 
equals 170 for different CS based algorithms.
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equal 18 %. The other SP, SBI, BP, and AMP algorithms achieve an enhanced response as they 
increase the rate of compression to 26.7, 27.3, 26.95, and 26.56 %, respectively. CoSaMP algorithm 
achieves savings of 21.1% that is in the middle.

Figure (6) illustrates the optimum compression rate for the different applied algorithms that 
achieve the acceptable value of MSE for different sparsity values. The optimum compression rate is 
defined as the maximum rate that achieve the minimum required MSE value which is selected as said 

to be 1 × e-6. This threshold MSE value that ensures a correct recovery of the received signal may 
vary from one application to other. It is clear from Fig. 6 that there is inversely proportional 
relationship between the sparsity and the achievable compression performance, whereas the sparsity 
value increases, the number of measurements required increase and therefor the compression 
performance decrease. 

The relation of Mean Square Error and compression performance for different CS based 
algorithms is shown in fig. (7). as the sparsity increase the compression performance decrease 
because the number of measurements required increase to achieve a certain value of mean square 
error.

The following section is devoted for studying the effect of the achieved compression through the 
different proposed algorithms on the network metrics like; network life time, First Dead Node, and 
network residual energy. The length of the compressed data for the different applied algorithms is 

determined from Fig. 5 for a sparsity case of 170 at MSE of  1 × e-6
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Fig.9 Network life time and FDN for different CS 
based algorithms.
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The first impact of the achieved compression is the network residual energy per round that 
illustrated in Fig. 8 It is clear from this figure. That transmitting sensor data without compression 
deplete rapidly the network energy, while applying the traditional CS that based on OMP-BCS 
algorithm enhances the network energy. A further enhancement in the network residual energy is 
noticed when applying the different proposed CS techniques, especially SP, AMP, and SBI algorithms 
as they dissipate less energy per each round of the network operation.

The next impact is the network life time and First Dead Node (FDN) that illustrated in Fig. 9 
This network parameter reveals how the network can operate with all of its nodes for long time 
without losing one of them. The energy saving due to data compression is reflected as shown on the 
network life time, the network life time of no CS case is minimum followed by OMP and BCS 
compressive sensing case, where the CS based on SP, AMP, and SBI algorithms not only enhances the 
network life time, but also begin losing the first node at higher rounds. CoSaMP algorithm network 
life time was moderate.

The energy efficiency is presented in Fig. 10 where the total energy dissipated in no CS case is 
the largest one followed by OMP and BCS case. The energy dissipated by SP, AMP, and SBI 
algorithms was minimum, and energy dissipated in CoSaMP algorithm was moderate.

Finally, a measure of network throughput that related to the amount of data transmitted is 
also illustrated in Fig. 11.  The CS based on SP, AMP, and SBI algorithms has the ability for sending 
the same network information, but with small data size compared to the traditional algorithm and 
compared to the case of sending data without compression.

VI. CONCLUSION

Based on the previous findings, it can be concluded that the proposed algorithm combines CS-based 

encryption methods and public key algorithms to achieve a high level of security with minimal 

communication costs. This is achieved through the encryption and compression of sensor data using 

the CS scheme, as well as the inclusion of data compression, CS-based encryption, and key sharing 

stages. To enhance the security of this process, the suggested approach incorporates an effective key 

sharing method and employs a secret value technique to protect the CS method against various 

attack models. Additionally, the proposed technique utilizes a public-key mechanism for encrypting 

cluster data, thereby mitigating CS attacks during the data aggregation and EC-DH encryption 

phases. As a result, the suggested scheme outperforms other CS systems in terms of security and the 

operational life span of WSN. ECC depends on DLP however any cryptographic system is vulnerable 

to various types of attacks.  Brute Force Attack where this type of attack attempts to find the private 

key by trying all possible combination, ECC solve this problem by using large key size and 

Standardized Curves.  Side-Channel Attack, the attacker finds the private key by monitoring the side 

channel leaked information like power consumption, timing, and electromagnetic radiation during the 

execution of the encryption algorithm this problem is solved by using secure hardware. Fault 

Injection Attacker, in this case the attacker introduces faults in the ECC calculation process, if 

successful the attacker reveals a part of the private key. ECC solve fault injection attacker and Invalid 

Curve Attacker by using trusted ECC and well tested algorithms and libraries that are resistant to 

various types of attacks. Key Reuse and Management Issues; if a single private key is used for 

multiple transmissions the attacker can exploit the poor key management practices to gain 

unauthorized access. Quantum Attackers, ECC is considered secure against classical computers, but 

it may become vulnerable to quantum computers in the future. ECC must stay informed with the 

latest update. Finally Implementation Flow; where error in the implementation of ECC algorithm can 

be exploited by attacker for example poor random generator, insufficient entropy or programming 

mistakes.so proper and robust random generator is necessary. In the future work we will study the 

effect of the number of keys in details.
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