The study assessed the acute vascular and thrombotic effects of replacing petrodiesel with a 30% or 100% rapeseed biodiesel formulation, following controlled exposure in healthy human subjects. It was hypothesized that inhalation of exhaust from biodiesel formulations would induce less vascular effects compared to standard petrodiesel fuel.
Study design
Two separate randomized controlled double-blind crossover studies were conducted. In study one, 16 subjects (14 male) were exposed both to PDE and exhaust generated from a biodiesel blend of 30% RME and 70% petrodiesel (RME30) on separate occasions. In study two, 19 subjects (all male) were separately exposed both to exhaust from 100% RME biodiesel without blending with petrodiesel (RME100) and PDE. In both studies, exposures were allocated in random order at least one week apart. Exposures were blinded for the subjects and researchers involved, but known to the engineer running the exposure facility from an adjacent room. Investigators were unblinded to the exposure codes only after completion of the full statistical analyses.
Exposures lasted one hour with intermittent exercise on a bicycle ergometer for 15 min alternating with 15 min rest. The bicycle ergometer was calibrated to give a minute ventilation during exercise of 20 L/m2 body surface area, as determined during a pre-test day. Exposures were conducted at the same time in the mornings in a purpose-built human exposure chamber, as described previously (23). Study 1 was performed April-June with an interval of 7-50 days (mean 20 days) between exposures and study 2 September-December with 7-46 day interval (mean 39 days). Subjects were not allowed to take any supplemental vitamins or antioxidants during the week before and during the study and instructed to take a light low nitrate breakfast on exposure days, but otherwise to maintain their normal diet. At mid-day subjects were given a standardized snack consisting of a protein drink and a piece of fruit. No other food or drink other than water was allowed during the measurements.
Study population
Thirty-six healthy non-smoking subjects (34 men and 2 women, aged 20-38 years, mean 27 years) were recruited, according to Good Clinical Practice (GCP) principles and as approved by the regional ethical review board and performed in accordance to the Declaration of Helsinki, with the written informed consent from all participants. All volunteers underwent a physician interview and physical examinations and were determined to have normal physiologic parameters, body mass index (BMI), lung function, blood chemistry and electrocardiogram, according to the normal values of the hospital. Exclusion criteria were diabetes mellitus, cardiovascular disease, asthma, smoking or snus usage (powdered tobacco used orally). Female subjects took a urinary pregnancy test before each exposure to exclude pregnancy and subjects currently using birth control were excluded. The subjects were all healthy without any current disease or prescribed medication.
Exhaust exposure
RME100 biodiesel and low-sulfur standard diesel (petrodiesel) were acquired from Preem AB (Stockholm, Sweden). RME30 was blended on site using RME100 and petrodiesel. The RME30 contained the proprietary fuel additive ACP (Active Cleaning Power) according to instructions from the fuel company. The additive has been indicated to improve combustion and decrease engine deposits and is intended to be commercially available. The exact chemical composition is confidential, however, Preem AB has disclosed it to consist of detergent, lubricant and cetane-number improving agents, given as personal information to a lead engineer at the SMP engineering site running the engine set up.
Exhaust was generated using a Volvo diesel engine (Volvo TD40 GJE, 4.0 L, 4 cylinders) running under variable load, according to the urban part of the European Transient Cycle (25). More than 90% of the exhaust was shunted away and the remainder was mixed with filtered air and fed into the exposure chamber to generate a target PM10 (PM with a mean aerodynamic diameter of <10 μm) concentration of 300 μg/m3 for both PDE and RME30 (28). For the RME100 exposure, an identical driving cycle was used with the same load and rounds per minute (rpm) pattern, without modifications to the engine, exhaust dilution system or exposure chamber. The study was specifically designed to investigate the health effects of the exhaust from a specific vehicle when replacing PDE with RME under the same driving conditions rather than similar PM mass concentration in the chamber for the exposures.
Emission characterization
PM10 concentration was determined gravimetrically using PTFE filters (Pall Teflo Life Science 47 mm, 2 µm). Real-time measurement of PM10 with a tapered-element oscillating microbalance (Rupprecht & Patashnik, Albany, New York, USA) was used during exposures to achieve steady PM levels at 300 μg/m3 (25). A scanning mobility particle sizer system (SMPS TSI, Shoreview, Minnesota, USA) was used to determine fine particle number concentration and size distribution (18-638 nm), which included an electrostatic classifier platform (TSI 3080, TSI GmbH) with a Differential Mobility Analyzer (TSI DMA 3081) and an ultrafine Condensation Particle Counter (TSI CPC 3025A). In addition, PM was also sampled by a Dekati Gravimetric Impactor (DGI) for subsequent analysis of metals and oxidative potential. The DGI classifies particle size according to aerodynamic diameter (cut-points; 2.5, 1.0, 0.5 and 0.2 μm). 47 mm PTFE plates were used as impactor substrates and 70 mm PTFE filters as back-up filters (<0.2 μm). Exposure concentrations were kept as constant as possible and samples were collected at intervals to reflect the average exposure scenarios.
For the carbon fractionation, standard 47 mm tissue quartz filters and 47 mm PTFE membrane filters were used. The analysis of particulate carbon fractions was performed by a standard thermal-optical method to determine the content of organic carbon (OC) and elemental carbon (EC) applying the EUSAAR 2 thermal protocol and a thermal-optical carbon analyzer (Sunset Laboratory Inc, Portland, Oregon, USA).
Assessment of metal content in exhaust particulate
Metal content was assessed using an ELAN DRC ICP-MS (MSF008). The three last stages of the DGI sampler were used, i.e. filters; PM<0.2, PM0.2-0.5 and PM0.5-1mm and the extraction was performed in HPLC-grade methanol, followed by vortexing and sonication in a water bath (max power, Clifton SW12h, Nickel-Electro Ltd., Weston-super-Mare, UK). The removed filter was then rinsed in methanol. Particle extract was subsequently dried down under nitrogen and recovered mass determined. Mass recoveries for the PM<0.2 and PM0.2-0.5 mm filters were good; 84.0±21.3% (filter loadings ranging from 510-860 mg) and 113.0±38.7% (170-370 mg) respectively. Recoveries from the PM0.5-1.0 mm filters were poor, reflecting the low filter loadings (20-180 mg) and were not used for subsequent analysis. Following particle resuspension in 1.0 mL of Chelex resin-treated water (sonication at max power), 100 mL aliquots were added to dilute Aqua Regia, spiked with an internal standard containing 1 ppm indium (isotope 115), gallium (69), bismuth (209) and yttrium (89), sealed in Teflon vessels and placed in a 90°C water bath. The mixture was cooled prior to the addition of Chelex-resin treated water. Metals quantified were: aluminum (27), arsenic (75), barium (135), beryllium (9), manganese (55), vanadium (50), antimony (121), cadmium (111), chromium (52), copper (63), molybdenum (95), nickel (60), lead (208), zinc (66), strontium (88), calcium (44), iron (56), boron (11), cobalt (59), rubidium (85), cesium (133), gold (197). Elemental concentrations were determined with reference to a 6-point standard curve based on an ICP multi element standard solution VI CertiPURÒ (Merck, Lot. No. OC529648) or, where not present, in the multi-elemental standard the elements own standard curve (ICP standard, MERCK).
Measurement of PAHs in exhaust
For collection of particulate and semi-volatile PAHs, sampling with 47 mm glass fiber filters followed by 70 mm polyurethane foam plugs (PUFs) were performed in the chamber during the exposures. Both filters and polyurethane foam plugs (PUFs) were spiked with an isotope labeled internal standard mixture. The samples were extracted with pressurized liquid extraction using an ASE 200 Accelerated Solvent Extractor system (Dionex Corporation, Sunnyvale, CA, USA). PUFs were extracted using hexane at 100°C and 1100 psi (7.58 MPa). Particles were extracted with toluene/methanol 9:1 (v/v) at 200°C and 3000 psi (20.7 MPa).
The raw extracts were concentrated to approximately 0.5 mL followed by solid phase extraction (SPE), and the SPE-purified extracts were analyzed using an in-house built HPLC-GC-MS system (52). Data was acquired and processed using MSD ChemStation (Agilent Technologies, Santa Clara, California, USA). PAHs were quantified using single point calibration. Compound identity was determined through compound specific mass to change ratio and its relative retention time on the GC capillary column.
Reported concentrations of semi-volatile PAHs are the sum of; phenanthrene, anthracene, 3-methylphenanthrene, 2-methylphenanthrene, 2-methylanthracene, 9-methylphenanthrene, 1-methylphenanthrene, 4H-cyclopenta[def]phenanthrene, 2-phenylnaphthalene, 3,6-dimethylphenanthrene, 3,9-dimethylphenanthrene, fluoranthene, pyrene, 2-methylpyrene, 4-methylpyrene, 1-methylpyrene, benz[a]anthracene, and chrysene. Reported concentrations of PM associated PAHs include those measured in the semi-volatile phase and the sum of benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-cd]pyrene, and benzo[ghi]perylene.
Assessing oxidative potential of PM
Oxidative potential of PM was first determined by electron paramagnetic resonance (EPR; or electron spin resonance) by measuring oxidation of a spin-trap with preferential selectivity for superoxide free radicals (53). Briefly, 47 mm teflon filters with PM were suspended in a physiological saline solution (Krebs buffer) at a particle concentration of 100 μg/mL Samples were vortexed, followed by sonication (100% power; Fisherbrand FB11002; Fisher Scientific, Loughborough, UK). Suspensions were incubated with the spin-trap, Tempone-H (1 mM; Enzo Life Sciences, Exeter, UK), for 60 min before measurement. Pyrogallol (100 μM), a spontaneous generator or superoxide radicals, was used as a positive control. An X-band EPR spectrometer (Magnettech MS-200, Berlin, Germany) was used. Baseline signals from blank filters were subtracted from that of filters with particulate.
Oxidative potential of PM was also determined by measuring glutathione levels in a synthetic respiratory tract lining fluid (sRTLF) following in vitro exposure to PM. Extracted PM (50 μg/mL) was incubated in sRTLF containing physiologically relevant concentrations of urate (UA), ascorbate (AA) and glutathione (GSH), adjusted to pH 7.0 and incubated at 37°C for four hours. Samples were centrifuged to remove particles, prior to samples acidification with metaphosphoric acid (final concentration 5% w/v). The remaining concentrations of ascorbate and urate were quantified using reverse phase HPLC with electrochemical detection (Jones Chromatography, Hengoed, Wales). Glutathione concentrations were determined with the GSSG-reductase-5,5′-dithio-bis(2-nitrobenzoic acid) (DNTB) recycling assay. Full details of the methodology and derivation of the OP metrics have been described previously (54,55).
Ex vivo blood coagulability model
Ex vivo thrombus formation was assessed two hours post-exposure using a Badimon chamber perfusion model of acute arterial injury as described previously (8). In brief, a venous cannula is inserted into an antecubital vein and blood drawn using a peristaltic pump at a rate of 10 mL/s via tubing connected to a perfusion chamber submerged in a water bath at 37oC. This model of acute arterial injury consists of three consecutive chambers containing porcine aortic strips from which the intima is removed, to exposure a prothrombotic surface that simulates deep arterial injury following plaque rupture. Blood is passed through the chambers for five minutes, followed by rinsing with saline. The strips are removed, fixed in paraformaldehyde, embedded for histological analysis, then cut and stained with Masson's trichrome. The sections are analyzed using a semi-automatic microscope and total thrombus area quantified (8).
Vascular endothelial function
Vascular vasomotor function was assessed using forearm venous occlusion plethysmography four to six hours after each exposure, as described previously (23-26). The brachial artery was cannulated with a 27-standard-wire-gauge steel needle. Following a saline infusion, four vasodilator drugs, reflecting NO-dependent and non-NO-dependent (verapamil) vasodilation, were infused separately at 1 mL/min in incremental doses separated by washouts to restore baseline flow. Bradykinin (100, 300 and 1,000 pmol/min); acetylcholine (5, 10 and 20 µg/min); sodium nitroprusside (2, 4 and 8 µg/min) were infused in random order, and verapamil (10, 30 and 100 µg/min) was infused last due to its long acting effects. Mercury-in-silicone strain gauges were used to assess forearm blood flow in both arms (infused arm and non-infused arm) simultaneously. Bradykinin induces the release of the fibrinolytic mediator, tissue plasminogen activator (t-PA) from the vascular endothelium. t-PA antigen concentrations were determined in blood samples collected before the first and following each dose of bradykinin, using enzyme-linked immunosorbent assay (TintElize tPA, Biopool EIA, Trinity Biotech, Bray, Ireland).
Blood cell counts
Venous blood samples for blood cell counts were obtained pre-exposure and 2, 4, 8 and 24 hours post-exposure and analyzed at an accredited hospital laboratory.
Assessing platelet activation with flow cytometry
Platelet activation was assessed using flow cytometry at 2 and 4 hours post-exposure. Whole blood samples were immediately labeled with monoclonal antibodies (mAbs) for flow cytometric analysis: CD14-conjugated phycoerythrin (PE) (DAKO, Glostrup, Denmark) specific for monocytes, fluorescein isothiocyanate (FITC)-conjugated CD42a (Serotec, Oxford, UK) specific for platelets and isotype-matched control (Serotec, Oxford, UK). CD14-FITC and CD40-PE (Serotec, Oxford, UK) were used for analysis of CD40 positive monocytes. After incubation, cells were fixed and lysed with FACS-Lyse solution (Becton Dickinson, Franklin Lakes, New Jersey, USA) and samples were analyzed using Facs Calibur flow cytometer (Becton Dickinson, Franklin Lakes, New Jersey, USA). Platelet-monocyte aggregation and CD40 positivity of monocytes were expressed as percentage of 2,000-2,500 collected monocytes. In addition, to determine platelet surface expression of P-selectin and CD40-ligand, whole blood was labeled with CD42a (FITC), CD62p (PE) specific for P-selectin, CD154 specific for CD40 Ligand and isotype controls. Cells were analyzed with a Facs Calibur flow cytometer. Expression of P-selectin and CD40L were expressed as percentage of collected number of platelets (7,500).
Respiratory Measures
Forced expiratory volume during first second (FEV1) and vital capacity (VC) were measured at baseline and 8 hours post-exposure by spirometry (Jaeger Masterlab, Carefusion, San Diego, California) according to ATS/ERS guidelines (56). Fraction of exhaled NO (FENO) concentrations were evaluated using a nitric oxide analyzer (NIOX®, Aerocrine AB, Stockholm, Sweden) at an exhalation rate of 50 mL/s (± 10%), FENO50.
Data Analysis and Statistics
Statistical analyses were performed with GraphPad Prism (version 5, GraphPad Software, La Jolla, California, USA). Data were analyzed using paired and unpaired Student's t-test, Wilcoxon signed rank test and repeated measures analysis of variance (ANOVA), as appropriate. For blood cell counts, post-exposure changes from baseline were calculated at individual level. Statistical significance was taken at 2-sided p < 0.05.