Anand M., Kumar B., Sheel R., 2017. Effect of Heavy Metals on Biochemical Profile of Azolla filiculoides. International Journal of Current Microbiology and Applied Sciences 6(10): 3629-3653. https://doi.org/10.20546/ijcmas.2017.610.428
Andrade Júnior WV., Oliveira Neto CF., Santos Filho BG., Amarante CB., Cruz ED., Okumura RS., Barbosa AVC., Sousa DJP., Teixeira JSS., Botelho AS., 2019. Effect of cadmium on young plants of Virola surinamensis. AoB Plants 11(3): 1-11. doi: 10.1093/aobpla/plz022
Aslam R., Ansari MYK., Choudhary S., Bhat TM., Jahan N., 2014. Genotoxic effects of heavy metal cadmium on growth, biochemical, cyto-physiological parameters and detection of DNA polymorphism by RAPD in Capsicum annuum L. An important spice crop of India. Saudi J Bio Sci 21(5): 465-472. doi: 10.1016/j.sjbs.2014.07.005
Badr A., Angers P., Desjardins P., 2015. Comprehensive analysis of in vitro to ex vitro transition of tissue cultured potato plantlets grown with or without sucrose using metabolic profiling technique. Plant Cell Tissue Organ Cult 122(2): 491-508. https://doi.org/10.1007/s11240-015-0786-3
Bates LS., Waldren RP., Teare ID., 1973. Rapid Determination of Free Proline for Water-Stress Studies. Short Communication. Plant Soil 39(1): 205-207. https://doi.org/10.1007/BF00018060
Bradford MM., 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem 72(1-2): 248-254. doi:10.1006/abio.1976.9999
Chen CT., Chen LM., Lin CC., Kao CH., 2001. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160(2): 283-290. Doi:10.1016/s0168-9452(00)00393-9
Dai H., Shan C., Jia G., Lu C., Yang T., Wei A., 2013. Cadmium detoxification in Populus x canescens. Turk J Bot 37(5): 950-955. Doi: 10.3906/bot-1110-9
Devi R., Grupta A. K., Murjral, N., Kaur N., 2007. Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea Environmental and Experimental Botany 61(2):167-174. DOI: 10.1016/j.envexpbot.2007.05.006
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F., 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 28(3): 350-356. https://doi.org/10.1021/ac60111a017
Elloumi N., Zouari M., Chaari L., Jomni C., Rouina BB., Abdallah FB., 2014. Ecophysiological responses of almond (Prunus dulcis) seedlings to cadmium stress. Biologia 69(5): 604-609. https://doi.org/10.2478/s11756-014-0348-x
Fryzova R., Pohanka M., Martinkova P., Cihlarova H., Brtnicky M., Hladky J., Kynicky J., 2017. Oxidative Stress and Heavy Metals in Plants. In: de Voogt P. (ed.) Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews). Springer, Madrid, Spain 245: 129-156. https://doi.org/10.1007/398_2017_7
Hageman RHG., Hucklesby DP., 1971. Nitrate Reductase from Higher Plants. Methods in Enzimol 23: 491-503. https://doi.org/10.1016/S0076-6879(71)23121-9
Hasanuzzaman M., Nahar K., Anee TI., Fujita M., 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23(2): 249-268. Doi:10.1007/s12298-017-0422-2
He J., Li H., Luo J., Ma C., Li S., Qu L., Gai Y., Jiang X., Janz D., Polle A., Tyree M., Luo ZB., 2013. A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus x canescens. Plant Physiol 162(1): 424-439. Doi: https://doi.org/10.1104/pp.113.215681
Hernández LE., Sobrino-plata J., Montero-Palmero MB., Carrasco-Gil S., Flores-Cáceres ML., Ortega-Villasante C., Escobar C., 2015. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66(10): 2901-2911. Doi: 10.1093/jxb/erv063.
Huang He., Xiong ZT., 2009. Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings. Pesticide Biochemistry and Physiology 94 (2-3) 64-67. doi:10.1016/j.pestbp.2009.04.003
Kapoor D., Rattan A., Bhardwaj R., Kaur S., 2016. Photosynthetic efficiency, ion analysis and carbohydrate metabolism in Brassica juncea Plants under cadmium stress. Journal of Pharmacognosy and Phytochemistry 5(3): 279-286
Khan MA, Khan S, Khan A, Alam M., 2017. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601-602: 1591-1605. Doi: 10.1016/j.scitotenv.2017.06.030.
Mao QQ, Guan MY, Lu KX, Du ST, Fan SK, Ye YQ, Lin XY, Jin CW., 2014. Inhibition of Nitrate Transporter 1.1-Controlled Nitrate Uptake Reduces Cadmium Uptake in Arabidopsis. Plant Physiol 166(2): 934-944. doi.org/10.1104/pp.114.243766
Nascimento SF., Kurzweil H., Wruss W., Fenzl N., 2006. Cadmium in the Amazonian Guajara' Estuary: Distribution and remobilization. Environmental Pollution 140(1). 29-42. Doi: 10.1016/j.envpol.2005.07.003
Nasraoui-Hajaji A., Chaffei-Haouari C., Ghorbel MH., Gouia H., 2011. Growth and nitrate assimilation in tomato (Solanum lycopersicon) grown with different nitrogen source and treated with cadmium. Acta Bot Gall 158(1): 3-11. https://doi.org/10.1080/12538078.2011.10516249
Nikolić N., Zorić L., Cvetković I., Pajević S., Borišev M., Orlović S., Pilipović A., 2017. Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus x euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. iForest 10(3): 635-644. Doi: 10.3832/ifor2165-010
Oliveira HSP., França SCA., Rocha EJP., Atividades de mineração e avaliação de metais em água superficial, sedimento de fundo e peixes no Rio Tapajós. In: Amazônia em tempo: estudos climáticos e socioambientais. Belém: Museu Paraense Emílio Goeldi / EMBRAPA, 2015. p.195-222.
Peoples MB., Faizah AW., Reakasem BE., Herridge DF., 1989. Methods for Evaluating Nitrogen Fixation by Nodulated Legumes in the Field. Australian Centre for International Agricultural Research, Canberra 1: 1-76. DOI: 10.22004/ag.econ.118041
Rahoui S., Chaoui A., Bem C., Rickauer M., Gentzbittel L., Ferjani E., 2015. Effect of cadmium pollution on mobilization of embryo reserves in seedlings of six contrasted Medicago truncatula lines. 111: 98-106. doi: 10.1016/j.phytochem.2014.12.002.
Raldugina GN., Krasavina MS., Lunkova NF., Burmistrova NA., 2016. Chapter 4 - Resistance of Plants to Cu Stress. Transgenesis. Plant Metal Interaction 69-114. https://doi.org/10.1016/B978-0-12-803158-2.00004-7
Reyes TH., Sartazza A., Pompeiano A., Ciurli A., Lu Y., Guglielminetti L., Yamaguchi J., 2018. Nitrate Reductase Modulation in Response to Changes in C/N Balance and Nitrogen Source in Arabidopsis. Plant Cell Physiol 59(6): 1248-1254. doi: 10.1093/pcp/pcy065.
Rinner KT., Saurer M., Streit K., Siegwolf RTW., 2012. Evaluation of a liquid chromatography method for compound specific δ 13C analysis of plant carbohydrates in alkaline media. Rapid Commun in Mass Spectrom 26(18): 2173-2185. https://doi.org/10.1002/rcm.6334
Sharma SS., Dietz KJ., 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4): 711-726. Doi: 10.1093/jxb/erj073
Shah K., Mankad AU., Reddy MN., (2017). Cadmium accumulation and its effects on growth and biochemical parameters in Tagetes erecta L. J Pharmacogn and Phytochem 6(3): 111-115. http://www.phytojournal.com/archives/2017/vol6issue3/PartB/6-2-77-387.pdf
Singh S., Parihar P., Singh R., Singh VP., Prasad SM., 2016. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front Plant Sci 6: 1-36. doi: 10.3389/fpls.2015.01143
Song Y., Jin L., Wang X., 2016. Cadmium absorption and transportation pathways in plants. Int J Phytoremediation 19(2): 133-141. Doi:10.1080/15226514.2016.1207598
Statistical Analisys System Institute – SAS (2007) SAS® 9.1.3 (TS1M3) for Windows Microsoft. Cary: SAS Institute Inc.
Todd, C. D. 2016. Allantoin Increases Cadmium Tolerance in Arabidopsis via Activation of Antioxidant Mechanisms. Plant and Cell Physiology Advance, v. 57, n. 12, p. 2485-2496.
Van Handel E., 1968. Direct Microdetermination of Sucrose. Anal Biochem 22(2): 280-283. https://doi.org/10.1016/0003-2697(68)90317-5
Van der Ent A., Baker AJM., Reeves RD., Pollard AJ., Schat H., (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1-2): 319-334. https://doi.org/10.1007/s11104-012-1287-3
Xie Y., Hu L., Du Z., Sun X., Amombo E., Fan J., Fu J., 2014. Effects of Cadmium Exposure on Growth and Metabolic Profile of Bermudagrass [Cynodon dactylon (L.) Pers.]. PLoS ONE 9(12): e115279. doi: 10.1371/journal.pone.0115279.
Wang Y., Gu C., Bai S., Sun Z., Zhu T., Zhu X., Grit DH., Tembrock LR., 2016. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia fauriei (Lythracaeae) seedlings for phytoremediation applications. Int J Phytoremediation 18(11): 1104-1112. doi: 10.1080/15226514.2016.1183581.
Weatherburn MW., 1967. Phenol Hipochlorite Reaction for Determination of Ammonia. Anal Chem 39(8): 971-974. https://doi.org/10.1021/ac60252a045
Yadav S., Srivastava J., 2017. Cadmium phytoextraction and induced antioxidant gene response in Moringa oleifera Lam. Am J plant Physiol 12(2): 58-70. Doi:10.3923/ajpp.2017.58.70
Zayneb C., Bassem K., Zeineb K., Grubb CD., Noureddine D., Hafedh M., Amine E., 2015. Physiological responses of fenugreek seedlings and plants treated with cadmium. Environ Sci Pollut Res 22(14): 10679-89. https://doi.org/10.1007/s11356-015-4270-8
Zemanová V., Pavlík M., Pavlíková D., Tlustoš P., 2013. The changes of contents of selected free amino acids associated with cadmium stress in Noccaea caerulescens and Arabidopsis halleri. Plant Soil Environ 59(9): 417-422. doi: 10.17221/403/2013-PSE