1 Su, S. et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 24, 490-502, doi:10.1016/j.tim.2016.03.003 (2016).
2 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
3 ICTV. Naming the 2019 coronavirus. http://talk.ictvonline.org/ (2020).
4 Hui, D. S. et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91, 264-266, doi:10.1016/j.ijid.2020.01.009 (2020).
5 World Health Organization (WHO). WHO Director-General's opening remarks at the media briefing on COVID-19. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (2020).
6 World Health Organization (WHO). Coronavirus disease (COVID-19) outbreak situation. https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=Cj0KCQjwoPL2BRDxARIsAEMm9y_2o8RtKOqhgZuzXq1021Xw8yuLIV7iopd9crZU1zVmv73jUkTemN8aArjQEALw_wcB (2020).
7 Shi, S. et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. E1-E8 (2020).
8 Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506 (2020).
9 Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323, 1061-1069 (2020).
10 Centers for Disease Control and Prevention (CDC), U. Symptoms of Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (2020a).
11 Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507-513, doi:10.1016/S0140-6736(20)30211-7 (2020).
12 Day, M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ 369, m1375, doi:10.1136/bmj.m1375 (2020).
13 Madjid, M., Safavi-Naeini, P., Solomon, S. D. & Vardeny, O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. E1-E10 (2020).
14 Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8, 475-481 (2020).
15 Dhama, K. et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 1-7, doi:10.1080/21645515.2020.1735227 (2020).
16 Sanders, J. M., Monogue, M. L., Jodlowski, T. Z. & Cutrell, J. B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 323, 1824-1836 (2020).
17 Amarelle, L. & Lecuona, E. The Antiviral Effects of Na,K-ATPase Inhibition: A Minireview. Int. J. Mol. Sci. 19, doi:10.3390/ijms19082154 (2018).
18 Norris, M. J. et al. Targeting intracellular ion homeostasis for the control of respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 59, 733-744 (2018).
19 Dodson, A. W., Taylor, T. J., Knipe, D. M. & Coen, D. M. Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology 366, 340-348 (2007).
20 Ganesan, V. K., Duan, B. & Reid, S. P. Chikungunya virus: pathophysiology, mechanism, and modeling. Viruses 9, 368 (2017).
21 Kapoor, A. et al. Human cytomegalovirus inhibition by cardiac glycosides: evidence for involvement of the HERG gene. Antimicrob. Agents Chemother. 56, 4891-4899 (2012).
22 Laird, G. M., Eisele, E. E., Rabi, S. A., Nikolaeva, D. & Siliciano, R. F. A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides. J. Antimicrob. Chemother. 69, 988-994 (2014).
23 Yang, C.-W., Chang, H.-Y., Lee, Y.-Z., Hsu, H.-Y. & Lee, S.-J. The cardenolide ouabain suppresses coronaviral replication via augmenting a Na+/K+-ATPase-dependent PI3K_PDK1 axis signaling. Toxicol. Appl. Pharmacol. 356, 90-97 (2018).
24 Jeon, S. et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. doi: 10.1128/AAC.00819-20 (2020).
25 Dvela, M., Rosen, H., Feldmann, T., Nesher, M. & Lichtstein, D. Diverse biological responses to different cardiotonic steroids. Pathophysiology 14, 159-166 (2007).
26 Fürstenwerth, H. Ouabain-the insulin of the heart. Int. J. Clin. Pract. 64, 1591 (2010).
27 Rahimtoola, S. H. & Tak, T. The use of digitalis in heart failure. Curr. Probl. Cardiol. 21, 781-853 (1996).
28 Kang, Y. J. Mortality Rate of Infection With COVID-19 in Korea From the Perspective of Underlying Disease. Disaster Med. Public Health Prep., 1-3, doi:10.1017/dmp.2020.60 (2020).
29 Zou, X. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 14, 185-192 (2020).
30 Akhmerov, A. & Marbán, E. COVID-19 and the heart. Circ. Res. 126, 1443-1455 (2020).
31 Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 20, 269-270 (2020).
32 Ong, E. Z. et al. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host Microbe, 27, 1-4, doi: 10.1016/j.chom.2020.03.021. (2020).
33 Qin, C. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. doi: 10.1093/cid/ciaa248. (2020).
34 Shi, Y. et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. MedRxiv, doi: 10.1101/2020.03.12.20034736 (2020).
35 Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Resp. Med. 8, 420-422 (2020).
36 Harcourt, J. et al. Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient. BioRxiv, doi: 10.1101/2020.03.02.972935 (2020).
37 Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269-271 (2020).
38 Backer, J. A., Klinkenberg, D. & Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance 25, 2000062 (2020).
39 Zheng, Y. Y., Ma, Y. T., Zhang, J. Y. & Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 17, 259-260, doi:10.1038/s41569-020-0360-5 (2020).
40 Hasenfuss, G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc. Res. 39, 60-76 (1998).
41 Matsumori, A. & Sasayama, S. Immunomodulating agents for the management of heart failure with myocarditis and cardiomyopathy—lessons from animal experiments. Eur. Heart J. 16, 140-145 (1995).
42 Pollard, H. B., Pollard, B. S. & Pollard, J. R. Classical drug digitoxin inhibits influenza cytokine storm, with implications for COVID-19 therapy. bioRxiv (2020).
43 Kim, J.-M. et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health and Research Perspectives 11, 3 (2020).
44 Kim, J.-H. et al. Clinical diagnosis of early dengue infection by novel one-step multiplex real-time RT-PCR targeting NS1 gene. J. Clin. Virol. 65, 11-19 (2015).
45 Centers for Disease Control and Prevention (CDC). Research use only 2019-novel coronavirus (2019-nCoV) real-time RT-PCR primer and probe information. https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html. (2020b)