[1] Seth R, Singh A. Leukemias in Children[J]. The Indian Journal of Pediatrics, 2015,82(9):817-824.
[2] Karrman K, Johansson B. Pediatric T-cell acute lymphoblastic leukemia[J]. Genes, Chromosomes and Cancer, 2017,56(2):89-116.
[3] Hoffman A E, Schoonmade L J, Kaspers G J. Pediatric relapsed acute myeloid leukemia: a systematic review[J]. Expert Rev Anticancer Ther, 2021,21(1):45-52.
[4] Shen S, Cai J, Chen J, et al. Long-term results of the risk-stratified treatment of childhood acute lymphoblastic leukemia in China[J]. Hematological Oncology, 2018,36(4):679-688.
[5] Hunger S P, Lu X, Devidas M, et al. Improved Survival for Children and Adolescents With Acute Lymphoblastic Leukemia Between 1990 and 2005: A Report From the Children's Oncology Group[J]. Journal of Clinical Oncology, 2012,30(14):1663-1669.
[6] Sarmento-Ribeiro A B, Scorilas A, Gonçalves A C, et al. The emergence of drug resistance to targeted cancer therapies: Clinical evidence[J]. Drug Resistance Updates, 2019,47:100646.
[7] Sehgal A R, Konig H, Johnson D E, et al. You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia[J]. Leukemia, 2015,29(3):517-525.
[8] Sever O N, Demir O G. Autophagy: Cell death or survive mechanism[J]. Journal of oncological science, 2017,3(2):37-44.
[9] Schuler D, Szende B. Apoptosis in acute leukemia[J]. Leukemia Research, 2004,28(7):661-666.
[10] Hanahan D, Weinberg R A. Hallmarks of Cancer: The Next Generation[J]. Cell, 2011,144(5):646-674.
[11] Evangelisti C, Evangelisti C, Chiarini F, et al. Autophagy in acute leukemias: A double-edged sword with important therapeutic implications[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2015,1853(1):14-26.
[12] Nikoletopoulou V, Markaki M, Palikaras K, et al. Crosstalk between apoptosis, necrosis and autophagy[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013,1833(12):3448-3459.
[13] Xu J, Patel N H, Gewirtz D A. Triangular Relationship between p53, Autophagy, and Chemotherapy Resistance[J]. International Journal of Molecular Sciences, 2020,21(23):8991.
[14] Yang L, Yu Y, Kang R, et al. Up-regulated autophagy by endogenous high mobility group box-1 promotes chemoresistance in leukemia cells[J]. Leuk Lymphoma, 2012,53(2):315-322.
[15] Zhao M, Yang M, Yang L, et al. HMGB1 regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid leukemia cells[J]. BMB Reports, 2011,44(9):601-606.
[16] Huang Z, Zhong Z, Zhang L, et al. Down-regulation of HMGB1 expression by shRNA constructs inhibits the bioactivity of urothelial carcinoma cell lines via the NF-κB pathway[J]. Scientific Reports, 2015,5(1).
[17] Liu Y, Chen P, Xu L, et al. Extracellular HMGB1 prevents necroptosis in acute myeloid leukemia cells[J]. Biomedicine & pharmacotherapy, 2019,112:108714.
[18] Huang C, Chiang S, Chen W T, et al. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer[J]. Cell Death & Disease, 2018,9(10).
[19] Yin H, Yang X, Gu W, et al. HMGB1-mediated autophagy attenuates gemcitabine-induced apoptosis in bladder cancer cells involving JNK and ERK activation[J]. Oncotarget, 2017,8(42):71642-71656.
[20] Yuan S, Liu Z, Xu Z, et al. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies[J]. Journal of hematology and oncology, 2020,13(1):1-91.
[21] A. Richard S. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review[J]. 2018,5(4):183-241.
[22] Farahat M, Sharaf M, Attia T. The serum high-mobility group box 1 level and RAGE expression in childhood acute lymphoblastic leukemic patients′[J]. The Egyptian Journal of Haematology, 2015,40(2):60.
[23] Li Y, Xie J, Li X, et al. Poly (ADP-ribosylation) of HMGB1 facilitates its acetylation and promotes HMGB1 translocation-associated chemotherapy-induced autophagy in leukaemia cells[J]. Oncol Lett, 2020,19(1):368-378.
[24] Kang R, Livesey K M, Zeh H R, et al. HMGB1 as an autophagy sensor in oxidative stress[J]. Autophagy, 2011,7(8):904-906.
[25] KONG Q, XU L, XU W, et al. HMGB1 translocation is involved in the transformation of autophagy complexes and promotes chemoresistance in leukaemia[J]. International Journal of Oncology, 2015,47(1):161-170.
[26] Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells[J]. Seminars in Immunology, 2018,38:40-48.
[27] Tang D, Kang R, Cheh C W, et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells[J]. Oncogene, 2010,29(38):5299-5310.
[28] Jangde N, Ray R, Rai V. RAGE and its ligands: from pathogenesis to therapeutics[J]. Critical reviews in biochemistry and molecular biology, 2020,55(6):555-575.
[29] Bucciarelli L G, Wendt T, Rong L, et al. RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease[J]. Cell Mol Life Sci, 2002,59(7):1117-1128.
[30] El-Far A H, Sroga G, Al Jaouni S K, et al. Role and Mechanisms of RAGE-Ligand Complexes and RAGE-Inhibitors in Cancer Progression[J]. International Journal of Molecular Sciences, 2020,21(10):3613.
[31] Kang R, Tang D, Livesey K M, et al. The Receptor for Advanced Glycation End-Products (RAGE) Protects Pancreatic Tumor Cells Against Oxidative Injury[J]. Antioxidants & Redox Signaling, 2011,15(8):2175-2184.
[32] Fuentes M K, Nigavekar S S, Arumugam T, et al. RAGE Activation by S100P in Colon Cancer Stimulates Growth, Migration, and Cell Signaling Pathways[J]. Diseases of the Colon & Rectum, 2007,50(8):1230-1240.
[33] Kang R, Tang D, Schapiro N E, et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival[J]. Cell Death Differ, 2010,17(4):666-676.
[34] Bierhaus A, Humpert P M, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products[J]. Journal of Molecular Medicine, 2005,83(11):876-886.
[35] Fletcher J I, Haber M, Henderson M J, et al. ABC transporters in cancer: more than just drug efflux pumps[J]. Nature Reviews Cancer, 2010,10(2):147-156.
[36] Fazlina N, Maha A, Zarina A L, et al. Assessment of P-gp and MRP1 activities using MultiDrugQuant Assay Kit: a preliminary study of correlation between protein expressions and its functional activities in newly diagnosed acute leukaemia patients[J]. Malaysian journal of pathology, 2008,30(2):87-93.
[37] Morrish E, Copeland A, Moujalled D M, et al. Clinical MDR1 inhibitors enhance Smac-mimetic bioavailability to kill murine LSCs and improve survival in AML models[J]. Blood Advances, 2020,4(20):5062-5077.
[38] Legrand O, Simonin G, Beauchamp-Nicoud A, et al. Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia[J]. Blood, 1999,94(3):1046-1056.
[39] YIN Y, LI W, DENG M, et al. Extracellular high mobility group box chromosomal protein 1 promotes drug resistance by increasing the expression of P-glycoprotein expression in gastric adenocarcinoma cells[J]. Molecular Medicine Reports, 2014,9(4):1439-1443.
[40] Zhao B X, Sun Y B, Wang S Q, et al. Grape seed procyanidin reversal of p-glycoprotein associated multi-drug resistance via down-regulation of NF-kappaB and MAPK/ERK mediated YB-1 activity in A2780/T cells[J]. PLoS One, 2013,8(8):e71071.
[41] Chen C, Lu L, Yan S, et al. Autophagy and doxorubicin resistance in cancer[J]. Anti-Cancer Drugs, 2018,29(1):1-9.
[42] Muller S, Scaffidi P, Degryse B, et al. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal[J]. EMBO J, 2001,20(16):4337-4340.
[43] Han W, Sun J, Feng L, et al. Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells[J]. PloS one, 2011,6(12):e28491.
[44] Hori O, Brett J, Slattery T, et al. The Receptor for Advanced Glycation End Products (RAGE) Is a Cellular Binding Site for Amphoterin[J]. The Journal of biological chemistry, 1995,270(43):25752.
[45] Kalea A Z, See F, Harja E, et al. Alternatively Spliced RAGEv1 Inhibits Tumorigenesis through Suppression of JNK Signaling[J]. Cancer Research, 2010,70(13):5628-5638.
[46] Wu D, Ding Y, Wang S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma[J]. The Journal of Pathology, 2008,216(2):167-175.
[47] Kang R, Tang D, Lotze M T, et al. AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway[J]. Autophagy, 2012,8(6):989-991.
[48] Kang R, Livesey K M, Zeh I H J, et al. Metabolic regulation by HMGB1-mediated autophagy and mitophagy[J]. Autophagy, 2011,7(10):1256-1258.
[49] Pan B, Chen D, Huang J, et al. HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma[J]. Mol Cancer, 2014,13:165.
[50] Li J, Sun J, Rong R, et al. HMGB1 promotes myeloid-derived suppressor cells and renal cell carcinoma immune escape[J]. Oncotarget, 2017,8(38):63290-63298.
[51] Liu L, Gao F, Ye Y, et al. [Influence of HMGB1/MAPK/m-TOR signaling pathway on cell autophagy and chemotherapy resistance in K562 cells][J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2016,41(10):1016-1023.
[52] Livesey K M, Kang R, Vernon P, et al. p53/HMGB1 Complexes Regulate Autophagy and Apoptosis[J]. Cancer Research, 2012,72(8):1996-2005.
[53] Aubrey B J, Kelly G L, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?[J]. Cell death and differentiation, 2018,25(1):104-113.
[54] Kang R, Chen R, Zhang Q, et al. HMGB1 in health and disease[J]. Mol Aspects Med, 2014,40:1-116.
[55] Kalea A Z, Reiniger N, Yang H, et al. Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene[J]. FASEB J, 2009,23(6):1766-1774.
[56] Xie J, Méndez J D, Méndez-Valenzuela V, et al. Cellular signalling of the receptor for advanced glycation end products (RAGE)[J]. Cellular signalling, 2013,25(11):2185-2197.
[57] YIN Y, LI W, DENG M, et al. Extracellular high mobility group box chromosomal protein 1 promotes drug resistance by increasing the expression of P-glycoprotein expression in gastric adenocarcinoma cells[J]. Molecular medicine reports, 2014,9(4):1439-1443.
[58] Yu L, Li L, Medeiros L J, et al. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms[J]. Blood Reviews, 2017,31(2):77-92.
[59] Karin M, Greten F R. NF-κB: linking inflammation and immunity to cancer development and progression[J]. Nature Reviews Immunology, 2005,5(10):749-759.
[60] Fukuda Y, Lian S, Schuetz J D. Leukemia and ABC transporters[J]. Advances in cancer research, 2015,125:171-196.