1 Zhou P, Y. X., Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, doi:https://doi.org/10.1038/s41586-020-2012-7 (2020).
2 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, doi:10.1056/NEJMoa2001017 (2020).
3 Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953-1966, doi:10.1056/NEJMoa030781 (2003).
4 Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814-1820, doi:10.1056/NEJMoa1211721 (2012).
5 Zou, L. et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 382, 1177-1179, doi:10.1056/NEJMc2001737 (2020).
6 Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science, doi:10.1126/science.abc1669 (2020).
7 Puelles, V. G. et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med, doi:10.1056/NEJMc2011400 (2020).
8 Lin, L. et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 69, 997-1001, doi:10.1136/gutjnl-2020-321013 (2020).
9 Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual review of virology 3, 237-261, doi:10.1146/annurev-virology-110615-042301 (2016).
10 Belouzard, S., Chu, V. C. & Whittaker, G. R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 106, 5871-5876, doi:10.1073/pnas.0809524106 (2009).
11 Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454, doi:10.1038/nature02145 (2003).
12 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278, doi:10.1016/j.cell.2020.02.052 (2020).
13 Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220, doi:10.1038/s41586-020-2180-5 (2020).
14 Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448, doi:10.1126/science.abb2762 (2020).
15 Wang, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11, 2251, doi:10.1038/s41467-020-16256-y (2020).
16 Chen, X. et al. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell Mol Immunol, doi:10.1038/s41423-020-0426-7 (2020).
17 Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630-633, doi:10.1126/science.abb7269 (2020).
18 Tian, X. et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging microbes & infections 9, 382-385, doi:10.1080/22221751.2020.1729069 (2020).
19 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263, doi:10.1126/science.abb2507 (2020).
20 Lukassen, S. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. The EMBO journal n/a, e105114, doi:10.15252/embj.20105114 (2020).
21 Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, doi:10.1038/s41591-020-0868-6 (2020).
22 Han, X. et al. Construction of a human cell landscape at single-cell level. Nature, doi:10.1038/s41586-020-2157-4 (2020).
23 Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10, 730-736, doi:10.1038/nmeth.2557 nmeth.2557 [pii] (2013).
24 Li, X. et al. Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. Cell Rep 20, 737-749, doi:10.1016/j.celrep.2017.06.077 (2017).
25 Li, X. et al. Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family. Mol Cell Proteomics 15, 3030-3044, doi:10.1074/mcp.M116.060277
M116.060277 [pii] (2016).
26 Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society 125, 1731-1737, doi:10.1021/ja026939x (2003).
27 Evans, J. P. & Liu, S. L. Multifaceted Roles of TIM-Family Proteins in Virus-Host Interactions. Trends in microbiology 28, 224-235, doi:10.1016/j.tim.2019.10.004 (2020).
28 O'Bryan, J. P. et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 11, 5016-5031, doi:10.1128/mcb.11.10.5016 (1991).
29 Goruppi, S., Ruaro, E. & Schneider, C. Gas6, the ligand of Axl tyrosine kinase receptor, has mitogenic and survival activities for serum starved NIH3T3 fibroblasts. Oncogene 12, 471-480 (1996).
30 Stitt, T. N. et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80, 661-670, doi:10.1016/0092-8674(95)90520-0 (1995).
31 Ohashi, K. et al. Stimulation of sky receptor tyrosine kinase by the product of growth arrest-specific gene 6. J Biol Chem 270, 22681-22684, doi:10.1074/jbc.270.39.22681 (1995).
32 Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293, 306-311, doi:10.1126/science.1061663 (2001).
33 Sasaki, T. et al. Structural basis for Gas6-Axl signalling. EMBO J 25, 80-87, doi:10.1038/sj.emboj.7600912 (2006).
34 Shimojima, M. et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol 80, 10109-10116, doi:10.1128/JVI.01157-06 (2006).
35 Monteil, V. et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 181, 905-913 e907, doi:10.1016/j.cell.2020.04.004 (2020).
36 Xiangyang Chi, R. Y., Jun Zhang, Guanying Zhang, Yuanyuan Zhang, Meng Hao, Zhe Zhang, Pengfei Fan, Yunzhu Dong, Yilong Yang, Zhengshan Chen, Yingying Guo, Jinlong Zhang, Yaning Li, Xiaohong Song, Yi Chen, Lu Xia, Ling Fu, Lihua Hou, Junjie Xu, Changming Yu, Jianmin Li, Qiang Zhou, Wei Chen. A potent neutralizing human antibody reveals the N-terminal domain of the Spike protein of SARS-CoV-2 as a site of vulnerability. BioRxiv, doi:https://doi.org/10.1101/2020.05.08.083964 (2020).
37 Wang, W. et al. Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics 13, 119-131, doi:10.1074/mcp.M113.030049 M113.030049 [pii] (2014).
38 Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850-858 (1996).
39 Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207-214, doi:nmeth1019 [pii] 10.1038/nmeth1019 (2007).
40 Nesvizhskii, A. I. & Aebersold, R. Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4, 1419-1440, doi:R500012-MCP200 [pii] 10.1074/mcp.R500012-MCP200 (2005).
41 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e1821, doi:10.1016/j.cell.2019.05.031 (2019).
42 Brooks, B. R. et al. CHARMM: The biomolecular simulation program. Journal of Computational Chemistry 30, 1545-1614, doi:10.1002/jcc.21287 (2009).
43 Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 14, 71-73, doi:10.1038/nmeth.4067 (2017).
44 Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology 13, e1005659, doi:10.1371/journal.pcbi.1005659 (2017).
45 Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature microbiology 5, 562-569, doi:10.1038/s41564-020-0688-y (2020).