Aims: Livestock grazing, one of the principal utilization patterns, usually exerts a substantial effect on the carbon allocations between the above- and belowground components of a grassland ecosystem. The major aims of this study were to evaluate the proportions of 13C allocation to various C pools of the plant-soil system of a meadow steppe ecosystem in response to livestock grazing intensity.
Methods: In situ stable 13C isotope pulse labeling was conducted in the plots of a long-term grazing experiment with 4 levels of grazing intensities. Plant and soil materials were sampled at on eight occasions (0, 3, 10, 18, 31, 56 and 100 days after labeling) to analyze the decline in 13C over time, and their composition signature of 13C were analyzed by the isotope ratio mass spectrometer technique.
Results: We found a significantly larger decline in assimilated 13C for the heavily grazed swards compared to other grazing intensities, with the relocation rate of 13C from shoots to belowground C pool being the highest. In contrast, light grazing significantly allocated 13C assimilates in the belowground pool, especially in the live root and topsoil C-pools.
Conclusions: The effects of livestock grazing on the carbon transfers and stocks within the plant-soil system of the meadow steppe were highly intensity dependent, and different carbon pools differed in response to gradient changes in grazing intensity.