1.De Camilli P, Emr SD, McPherson PS, Novick P. Phosphoinositides as regulators in membrane traffic. Science 271, 1533–1539 (1996).
2.Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 272, 227–234 (1996).
3.Bohnert M, Schuldiner M. Stepping outside the comfort zone of membrane contact site research. Nat Rev Mol Cell Biol 19, 483–484 (2018).
4.Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21, 7–24 (2020).
5.Saheki Y, De Camilli P. Endoplasmic Reticulum-Plasma Membrane Contact Sites. Annu Rev Biochem 86, 659–684 (2017).
6.Scorrano L, et al. Coming together to define membrane contact sites. Nat Commun 10, 1287 (2019).
7.Wu H, Carvalho P, Voeltz GK. Here, there, and everywhere: The importance of ER membrane contact sites. Science 361, (2018).
8.Burgoyne T, Patel S, Eden ER. Calcium signaling at ER membrane contact sites. Biochim Biophys Acta 1853, 2012–2017 (2015).
9.Collins SR, Meyer T. Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems. Trends Cell Biol 21, 202–211 (2011).
10.Venditti R, Masone MC, De Matteis MA. ER-Golgi membrane contact sites. Biochem Soc Trans 48, 187–197 (2020).
11.Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J 36, 3156–3174 (2017).
12.Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol Biol Cell 19, 3871–3884 (2008).
13.Wyles JP, McMaster CR, Ridgway ND. Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. J Biol Chem 277, 29908–29918 (2002).
14.Ikonen E. Mechanisms of cellular cholesterol compartmentalization: recent insights. Curr Opin Cell Biol 53, 77–83 (2018).
15.Simons K, Ikonen E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).
16.Ding X, Zhang W, Li S, Yang H. The role of cholesterol metabolism in cancer. Am J Cancer Res 9, 219–227 (2019).
17.Harder T, Scheiffele P, Verkade P, Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141, 929–942 (1998).
18.Nichols BJ. GM1-containing lipid rafts are depleted within clathrin-coated pits. Curr Biol 13, 686–690 (2003).
19.Pichler H, Riezman H. Where sterols are required for endocytosis. Biochim Biophys Acta 1666, 51–61 (2004).
20.Skotland T, Kavaliauskiene S, Sandvig K. The role of lipid species in membranes and cancer-related changes. Cancer Metastasis Rev, (2020).
21.Lingwood D, Ries J, Schwille P, Simons K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A 105, 10005–10010 (2008).
22.Lakshminarayan R, et al. Galectin–3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol 16, 595–606 (2014).
23.Falguieres T, et al. Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol Biol Cell 12, 2453–2468 (2001).
24.Romer W, et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140, 540–553 (2010).
25.Windschiegl B, et al. Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS One 4, e6238 (2009).
26.Renard HF, et al. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517, 493–496 (2015).
27.Boucrot E, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517, 460–465 (2015).
28.Ferreira APA, Boucrot E. Mechanisms of Carrier Formation during Clathrin-Independent Endocytosis. Trends Cell Biol 28, 188–200 (2018).
29.Horne JH, Meyer T. Elementary calcium-release units induced by inositol trisphosphate. Science 276, 1690–1693 (1997).
30.Taylor CW, Machaca K. IP3 receptors and store-operated Ca(2+) entry: a license to fill. Curr Opin Cell Biol 57, 1–7 (2019).
31.Koenig S, Moreau C, Dupont G, Scoumanne A, Erneux C. Regulation of NGF-driven neurite outgrowth by Ins(1,4,5)P3 kinase is specifically associated with the two isoenzymes Itpka and Itpkb in a model of PC12 cells. FEBS J 282, 2553–2569 (2015).
32.Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 96, 1261–1296 (2016).
33.Patel AB, et al. Frequent loss of inositol polyphosphate–5-phosphatase in oropharyngeal squamous cell carcinoma. J Eur Acad Dermatol Venereol 32, e36-e37 (2018).
34.Speed CJ, Little PJ, Hayman JA, Mitchell CA. Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation. EMBO J 15, 4852–4861 (1996).
35.Speed CJ, Neylon CB, Little PJ, Mitchell CA. Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with spontaneous calcium oscillations and enhanced calcium responses following endothelin–1 stimulation. J Cell Sci 112 ( Pt 5), 669–679 (1999).
36.Communi D, Lecocq R, Erneux C. Arginine 343 and 350 are two active residues involved in substrate binding by human Type I D-myo-inositol 1,4,5,-trisphosphate 5-phosphatase. J Biol Chem 271, 11676–11683 (1996).
37.Liu Q, et al. Cerebellum-enriched protein INPP5A contributes to selective neuropathology in mouse model of spinocerebellar ataxias type 17. Nat Commun 11, 1101 (2020).
38.Giordano F, et al. PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153, 1494–1509 (2013).
39.Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93, 1019–1137 (2013).
40.Wang H, et al. Phosphatidylinositol 3,4-bisphosphate synthesis and turnover are spatially segregated in the endocytic pathway. J Biol Chem 295, 1091–1104 (2020).
41.Gozzelino L, De Santis MC, Gulluni F, Hirsch E, Martini M. PI(3,4)P2 Signaling in Cancer and Metabolism. Front Oncol 10, 360 (2020).
42.Speed CJ, Mitchell CA. Sustained elevation in inositol 1,4,5-trisphosphate results in inhibition of phosphatidylinositol transfer protein activity and chronic depletion of the agonist-sensitive phosphoinositide pool. J Cell Sci 113 ( Pt 14), 2631–2638 (2000).
43.Torgersen ML, Skretting G, van Deurs B, Sandvig K. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114, 3737–3747 (2001).
44.Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG. The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci U S A 103, 2641–2646 (2006).
45.Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94, 2339–2344 (1997).
46.Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 51, 1643–1675 (2010).
47.Gkantiragas I, et al. Sphingomyelin-enriched microdomains at the Golgi complex. Mol Biol Cell 12, 1819–1833 (2001).
48.Fujita A, Cheng J, Hirakawa M, Furukawa K, Kusunoki S, Fujimoto T. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18, 2112–2122 (2007).
49.Maekawa M, Yang Y, Fairn GD. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes. Toxins (Basel) 8, (2016).
50.Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830–843 (2013).
51.Venditti R, et al. Molecular determinants of ER-Golgi contacts identified through a new FRET-FLIM system. J Cell Biol 218, 1055–1065 (2019).
52.Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P. Cell 166, 408–423 (2016).
53.Erneux C, Ghosh S, Koenig S. Inositol(1,4,5)P3 3-kinase isoenzymes: Catalytic properties and importance of targeting to F-actin to understand function. Adv Biol Regul 60, 135–143 (2016).
54.Shears SB. How versatile are inositol phosphate kinases? Biochem J 377, 265–280 (2004).
55.Williams RS, Eames M, Ryves WJ, Viggars J, Harwood AJ. Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate. EMBO J 18, 2734–2745 (1999).
56.Kang JK, et al. Increased intracellular Ca(2+) concentrations prevent membrane localization of PH domains through the formation of Ca(2+)-phosphoinositides. Proc Natl Acad Sci U S A 114, 11926–11931 (2017).
57.Balla A, Tuymetova G, Tsiomenko A, Varnai P, Balla T. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell 16, 1282–1295 (2005).
58.Yang AW, Sachs AJ, Nystuen AM. Deletion of Inpp5a causes ataxia and cerebellar degeneration in mice. Neurogenetics 16, 277–285 (2015).
59.D’Angelo G, et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007).
60.Maeda Y, et al. Effects of cyclodextrins on GM1-gangliosides in fibroblasts from GM1-gangliosidosis patients. J Pharm Pharmacol 67, 1133–1142 (2015).
61.Eden ER, Sanchez-Heras E, Tsapara A, Sobota A, Levine TP, Futter CE. Annexin A1 Tethers Membrane Contact Sites that Mediate ER to Endosome Cholesterol Transport. Dev Cell 37, 473–483 (2016).
62.Campbell JK, et al. Activation of the 43 kDa inositol polyphosphate 5-phosphatase by 14–3–3zeta. Biochemistry 36, 15363–15370 (1997).
63.Renard HF, et al. Endophilin-A3 and Galectin–8 control the clathrin-independent endocytosis of CD166. Nat Commun 11, 1457 (2020).
64.Garcia-Ruiz C, Morales A, Fernandez-Checa JC. Glycosphingolipids and cell death: one aim, many ways. Apoptosis 20, 607–620 (2015).
65.Gallego-Iradi C, et al. KCNC3(R420H), a K(+) channel mutation causative in spinocerebellar ataxia 13 displays aberrant intracellular trafficking. Neurobiol Dis 71, 270–279 (2014).
66.Sharkey LM, et al. The ataxia3 mutation in the N-terminal cytoplasmic domain of sodium channel Na(v)1.6 disrupts intracellular trafficking. J Neurosci 29, 2733–2741 (2009).
67.Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917 (1959).
68.Ozbalci C, Sachsenheimer T, Brugger B. Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol Biol 1033, 3–20 (2013).
69.Paltauf F, Hermetter A. Strategies for the synthesis of glycerophospholipids. Prog Lipid Res 33, 239–328 (1994).
70.Ejsing CS, et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106, 2136–2141 (2009).