[1] D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma, N Engl J Med 371 (2014) 1039-1049.
[2] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018, CA Cancer J Clin 68 (2018) 7-30.
[3] L. Rahib, B.D. Smith, R. Aizenberg, A.B. Rosenzweig, J.M. Fleshman, L.M. Matrisian, Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States, Cancer Res 74 (2014) 2913-2921.
[4] A. Neesse, C.A. Bauer, D. Ohlund, M. Lauth, M. Buchholz, P. Michl, D.A. Tuveson, T.M. Gress, Stromal biology and therapy in pancreatic cancer: ready for clinical translation?, Gut 68 (2019) 159-171.
[5] K. Ruan, G. Song, G. Ouyang, Role of hypoxia in the hallmarks of human cancer, J Cell Biochem 107 (2009) 1053-1062.
[6] M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J.M. Asara, W.S. Lane, W.G. Kaelin, Jr., HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing, Science 292 (2001) 464-468.
[7] B. Keith, R.S. Johnson, M.C. Simon, HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression, Nat Rev Cancer 12 (2011) 9-22.
[8] P. Jaakkola, D.R. Mole, Y.M. Tian, M.I. Wilson, J. Gielbert, S.J. Gaskell, A. von Kriegsheim, H.F. Hebestreit, M. Mukherji, C.J. Schofield, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation, Science 292 (2001) 468-472.
[9] R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism, Nat Rev Cancer 11 (2011) 85-95.
[10] M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science 324 (2009) 1029-1033.
[11] J.A. Menendez, J. Joven, S. Cufi, B. Corominas-Faja, C. Oliveras-Ferraros, E. Cuyas, B. Martin-Castillo, E. Lopez-Bonet, T. Alarcon, A. Vazquez-Martin, The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells, Cell Cycle 12 (2013) 1166-1179.
[12] J.R. Doherty, J.L. Cleveland, Targeting lactate metabolism for cancer therapeutics, J Clin Invest 123 (2013) 3685-3692.
[13] K.G. de la Cruz-Lopez, L.J. Castro-Munoz, D.O. Reyes-Hernandez, A. Garcia-Carranca, J. Manzo-Merino, Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches, Front Oncol 9 (2019) 1143.
[14] W. Chen, A. Yang, J. Jia, Y.V. Popov, D. Schuppan, H. You, Lysyl Oxidase (LOX) Family Members: Rationale and Their Potential as Therapeutic Targets for Liver Fibrosis, Hepatology 72 (2020) 729-741.
[15] S.D. Vallet, S. Ricard-Blum, Lysyl oxidases: from enzyme activity to extracellular matrix cross-links, Essays Biochem 63 (2019) 349-364.
[16] B. Wen, L.Y. Xu, E.M. Li, LOXL2 in cancer: regulation, downstream effectors and novel roles, Biochim Biophys Acta Rev Cancer 1874 (2020) 188435.
[17] R. Li, Y. Wang, X. Zhang, M. Feng, J. Ma, J. Li, X. Yang, F. Fang, Q. Xia, Z. Zhang, M. Shang, S. Jiang, Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis, Mol Cancer 18 (2019) 18.
[18] S.H. Jiang, J. Li, F.Y. Dong, J.Y. Yang, D.J. Liu, X.M. Yang, Y.H. Wang, M.W. Yang, X.L. Fu, X.X. Zhang, Q. Li, X.F. Pang, Y.M. Huo, J. Li, J.F. Zhang, H.Y. Lee, S.J. Lee, W.X. Qin, J.R. Gu, Y.W. Sun, Z.G. Zhang, Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice, Gastroenterology 153 (2017) 277-291 e219.
[19] S.H. Jiang, L.L. Zhu, M. Zhang, R.K. Li, Q. Yang, J.Y. Yan, C. Zhang, J.Y. Yang, F.Y. Dong, M. Dai, L.P. Hu, J. Li, Q. Li, Y.H. Wang, X.M. Yang, Y.L. Zhang, H.Z. Nie, L. Zhu, X.L. Zhang, G.A. Tian, X.X. Zhang, X.Y. Cao, L.Y. Tao, S. Huang, Y.S. Jiang, R. Hua, K. Qian Luo, J.R. Gu, Y.W. Sun, S. Hou, Z.G. Zhang, GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca(2+) signalling in a GABA-independent manner, Gut 68 (2019) 1994-2006.
[20] Y. Ye, Q. Hu, H. Chen, K. Liang, Y. Yuan, Y. Xiang, H. Ruan, Z. Zhang, A. Song, H. Zhang, L. Liu, L. Diao, Y. Lou, B. Zhou, L. Wang, S. Zhou, J. Gao, E. Jonasch, S.H. Lin, Y. Xia, C. Lin, L. Yang, G.B. Mills, H. Liang, L. Han, Characterization of Hypoxia-associated Molecular Features to Aid Hypoxia-Targeted Therapy, Nat Metab 1 (2019) 431-444.
[21] G.L. Semenza, HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations, J Clin Invest 123 (2013) 3664-3671.
[22] J.Y. Lee, J.H. Park, H.J. Choi, H.Y. Won, H.S. Joo, D.H. Shin, M.K. Park, B. Han, K.P. Kim, T.J. Lee, C.M. Croce, G. Kong, LSD1 demethylates HIF1alpha to inhibit hydroxylation and ubiquitin-mediated degradation in tumor angiogenesis, Oncogene 36 (2017) 5512-5521.
[23] E.T. Oh, J.W. Kim, J.M. Kim, S.J. Kim, J.S. Lee, S.S. Hong, J. Goodwin, R.J. Ruthenborg, M.G. Jung, H.J. Lee, C.H. Lee, E.S. Park, C. Kim, H.J. Park, NQO1 inhibits proteasome-mediated degradation of HIF-1alpha, Nat Commun 7 (2016) 13593.
[24] H.Y. Lee, T. Lee, N. Lee, E.G. Yang, C. Lee, J. Lee, E.Y. Moon, J. Ha, H. Park, Src activates HIF-1alpha not through direct phosphorylation of HIF-1alpha specific prolyl-4 hydroxylase 2 but through activation of the NADPH oxidase/Rac pathway, Carcinogenesis 32 (2011) 703-712.
[25] A. Galanis, A. Pappa, A. Giannakakis, E. Lanitis, D. Dangaj, R. Sandaltzopoulos, Reactive oxygen species and HIF-1 signalling in cancer, Cancer Lett 266 (2008) 12-20.
[26] E.P. Cuevas, G. Moreno-Bueno, G. Canesin, V. Santos, F. Portillo, A. Cano, LOXL2 catalytically inactive mutants mediate epithelial-to-mesenchymal transition, Biol Open 3 (2014) 129-137.
[27] N. Herranz, N. Dave, A. Millanes-Romero, L. Pascual-Reguant, L. Morey, V.M. Diaz, V. Lorenz-Fonfria, R. Gutierrez-Gallego, C. Jeronimo, A. Iturbide, L. Di Croce, A. Garcia de Herreros, S. Peiro, Lysyl oxidase-like 2 (LOXL2) oxidizes trimethylated lysine 4 in histone H3, FEBS J 283 (2016) 4263-4273.
[28] N. Hay, Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?, Nat Rev Cancer 16 (2016) 635-649.
[29] M.V. Liberti, Z. Dai, S.E. Wardell, J.A. Baccile, X. Liu, X. Gao, R. Baldi, M. Mehrmohamadi, M.O. Johnson, N.S. Madhukar, A.A. Shestov, I.I.C. Chio, O. Elemento, J.C. Rathmell, F.C. Schroeder, D.P. McDonnell, J.W. Locasale, A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product, Cell Metab 26 (2017) 648-659 e648.
[30] R.M. Perera, N. Bardeesy, Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up, Cancer Discov 5 (2015) 1247-1261.
[31] L. Peng, Y.L. Ran, H. Hu, L. Yu, Q. Liu, Z. Zhou, Y.M. Sun, L.C. Sun, J. Pan, L.X. Sun, P. Zhao, Z.H. Yang, Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway, Carcinogenesis 30 (2009) 1660-1669.
[32] C.C. Wong, A.P. Tse, Y.P. Huang, Y.T. Zhu, D.K. Chiu, R.K. Lai, S.L. Au, A.K. Kai, J.M. Lee, L.L. Wei, F.H. Tsang, R.C. Lo, J. Shi, Y.P. Zheng, C.M. Wong, I.O. Ng, Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma, Hepatology 60 (2014) 1645-1658.
[33] S.G. Ahn, S.M. Dong, A. Oshima, W.H. Kim, H.M. Lee, S.A. Lee, S.H. Kwon, J.H. Lee, J.M. Lee, J. Jeong, H.D. Lee, J.E. Green, LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients, Breast Cancer Res Treat 141 (2013) 89-99.
[34] H. Peinado, G. Moreno-Bueno, D. Hardisson, E. Perez-Gomez, V. Santos, M. Mendiola, J.I. de Diego, M. Nistal, M. Quintanilla, F. Portillo, A. Cano, Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas, Cancer Res 68 (2008) 4541-4550.
[35] H. Peinado, M. Del Carmen Iglesias-de la Cruz, D. Olmeda, K. Csiszar, K.S. Fong, S. Vega, M.A. Nieto, A. Cano, F. Portillo, A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression, EMBO J 24 (2005) 3446-3458.
[36] G. Canesin, E.P. Cuevas, V. Santos, C. Lopez-Menendez, G. Moreno-Bueno, Y. Huang, K. Csiszar, F. Portillo, H. Peinado, D. Lyden, A. Cano, Lysyl oxidase-like 2 (LOXL2) and E47 EMT factor: novel partners in E-cadherin repression and early metastasis colonization, Oncogene 34 (2015) 951-964.
[37] F. Salvador, A. Martin, C. Lopez-Menendez, G. Moreno-Bueno, V. Santos, A. Vazquez-Naharro, P.G. Santamaria, S. Morales, P.R. Dubus, L. Muinelo-Romay, R. Lopez-Lopez, J.C. Tung, V.M. Weaver, F. Portillo, A. Cano, Lysyl Oxidase-like Protein LOXL2 Promotes Lung Metastasis of Breast Cancer, Cancer Res 77 (2017) 5846-5859.
[38] F. Ruckert, P. Joensson, H.D. Saeger, R. Grutzmann, C. Pilarsky, Functional analysis of LOXL2 in pancreatic carcinoma, Int J Colorectal Dis 25 (2010) 303-311.
[39] J.S. Park, J.H. Lee, Y.S. Lee, J.K. Kim, S.M. Dong, D.S. Yoon, Emerging role of LOXL2 in the promotion of pancreas cancer metastasis, Oncotarget 7 (2016) 42539-42552.
[40] N. Tanaka, S. Yamada, F. Sonohara, M. Suenaga, M. Hayashi, H. Takami, Y. Niwa, N. Hattori, N. Iwata, M. Kanda, C. Tanaka, D. Kobayashi, G. Nakayama, M. Koike, M. Fujiwara, T. Fujii, Y. Kodera, Clinical Implications of Lysyl Oxidase-Like Protein 2 Expression in Pancreatic Cancer, Sci Rep 8 (2018) 9846.
[41] N.C. Denko, Hypoxia, HIF1 and glucose metabolism in the solid tumour, Nat Rev Cancer 8 (2008) 705-713.
[42] L.E. Huang, J. Gu, M. Schau, H.F. Bunn, Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway, Proc Natl Acad Sci U S A 95 (1998) 7987-7992.
[43] J.P. Cebria-Costa, L. Pascual-Reguant, A. Gonzalez-Perez, G. Serra-Bardenys, J. Querol, M. Cosin, G. Verde, R.A. Cigliano, W. Sanseverino, S. Segura-Bayona, A. Iturbide, D. Andreu, P. Nuciforo, C. Bernado-Morales, V. Rodilla, J. Arribas, J. Yelamos, A.G. de Herreros, T.H. Stracker, S. Peiro, LOXL2-mediated H3K4 oxidation reduces chromatin accessibility in triple-negative breast cancer cells, Oncogene 39 (2020) 79-121.
[44] O. Almacellas-Rabaiget, P. Monaco, J. Huertas-Martinez, S. Garcia-Monclus, M. Chicon-Bosch, S. Maqueda-Marcos, I. Fabra-Heredia, D. Herrero-Martin, S. Rello-Varona, E. de Alava, R. Lopez-Alemany, P.H. Giangrande, O.M. Tirado, LOXL2 promotes oncogenic progression in alveolar rhabdomyosarcoma independently of its catalytic activity, Cancer Lett 474 (2020) 1-14.
[45] R. Schietke, C. Warnecke, I. Wacker, J. Schodel, D.R. Mole, V. Campean, K. Amann, M. Goppelt-Struebe, J. Behrens, K.U. Eckardt, M.S. Wiesener, The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1, J Biol Chem 285 (2010) 6658-6669.
[46] T.R. Cox, R.M.H. Rumney, E.M. Schoof, L. Perryman, A.M. Hoye, A. Agrawal, D. Bird, N.A. Latif, H. Forrest, H.R. Evans, I.D. Huggins, G. Lang, R. Linding, A. Gartland, J.T. Erler, The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase, Nature 522 (2015) 106-110.
[47] C.C. Wong, D.M. Gilkes, H. Zhang, J. Chen, H. Wei, P. Chaturvedi, S.I. Fraley, C.M. Wong, U.S. Khoo, I.O. Ng, D. Wirtz, G.L. Semenza, Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation, Proc Natl Acad Sci U S A 108 (2011) 16369-16374.
[48] F. Pez, F. Dayan, J. Durivault, B. Kaniewski, G. Aimond, G.S. Le Provost, B. Deux, P. Clezardin, P. Sommer, J. Pouyssegur, C. Reynaud, The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth, Cancer Res 71 (2011) 1647-1657.
[49] L. Wu, Y. Zhu, The function and mechanisms of action of LOXL2 in cancer (Review), Int J Mol Med 36 (2015) 1200-1204.
[50] A. Cano, P.G. Santamaria, G. Moreno-Bueno, LOXL2 in epithelial cell plasticity and tumor progression, Future Oncol 8 (2012) 1095-1108.
[51] A. Millanes-Romero, N. Herranz, V. Perrera, A. Iturbide, J. Loubat-Casanovas, J. Gil, T. Jenuwein, A. Garcia de Herreros, S. Peiro, Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition, Mol Cell 52 (2013) 746-757.
[52] A. Iturbide, L. Pascual-Reguant, L. Fargas, J.P. Cebria, B. Alsina, A. Garcia de Herreros, S. Peiro, LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation, Mol Cell 58 (2015) 755-766.
[53] H.J. Moon, J. Finney, L. Xu, D. Moore, D.R. Welch, M. Mure, MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro, J Biol Chem 288 (2013) 30000-30008.
[54] A. Iturbide, A. Garcia de Herreros, S. Peiro, A new role for LOX and LOXL2 proteins in transcription regulation, FEBS J 282 (2015) 1768-1773.