1 Angelescu, D. G. & Linse, P. Viruses as supramolecular self-assemblies: modelling of capsid formation and genome packaging. Soft Matter 4, 1981-1990 (2008).
2 Myschik, J. et al. On the preparation, microscopic investigation and application of ISCOMs. Micron 37, 724-734 (2006).
3 Edwards, K., Gustafsson, J., Almgren, M. & Karlsson, G. Solubilization of lecithin vesicles by a cationic surfactant: intermediate structures in the vesicle-micelle transition observed by cryo-transmission electron microscopy. J. Colloid Interface Sci. 161, 299-309 (1993).
4 Almgren, M. Stomatosomes: perforated bilayer structures. Soft Matter 6, 1383-1390 (2010).
5 Ljusberg-Wahren, H. et al. in The Colloid Science of Lipids (Springer, 1998).
6 van Dam, L., Karlsson, G. & Edwards, K. Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR. BBA-Biomembranes 1664, 241-256 (2004).
7 Kim, J. K., Lee, E., Lim, Y. b. & Lee, M. Supramolecular capsules with gated pores from an amphiphilic rod assembly. Angew. Chem. Int. Ed. 47, 4662-4666 (2008).
8 Berlepsch, H. v. et al. Controlled self-assembly of stomatosomes by use of single-component fluorinated dendritic amphiphiles. Soft matter 14, 5256-5269 (2018).
9 Alessandri, K. et al. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). Lab Chip 16, 1593-1604 (2016).
10 Alessandri, K. et al. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. PNAS 110, 14843-14848 (2013).
11 Piñol, R. et al. Self-assembly of PEG-b-liquid crystal polymer: the role of smectic order in the formation of nanofibers. Macromolecules 40, 5625-5627 (2007).
12 Zhou, Y., Briand, V. A., Sharma, N., Ahn, S.-k. & Kasi, R. M. Polymers comprising cholesterol: synthesis, self-assembly, and applications. Materials 2, 636-660 (2009).
13 Xie, Y. & Li, Z. Recent advances in the Z/E isomers of tetraphenylethene derivatives: stereoselective synthesis, AIE mechanism, photophysical properties, and application as chemical probes. Chem. Asian J. 14, 2524-2541 (2019).
14 Peng, H.-Q. et al. Dramatic differences in aggregation-induced emission and supramolecular polymerizability of tetraphenylethene-based stereoisomers. J. Am. Chem. Soc. 139, 10150-10156 (2017).
15 Bunker, C. E., Hamilton, N. B. & Sun, Y. P. Quantitative application of principal component analysis and self-modeling spectral resolution to product analysis of tetraphenylethylene photochemical reactions. Anal. Chem. 65, 3460-3465 (1993).
16 Mei, J. et al. Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. 26, 5429-5479 (2014).
17 Mei, J., Leung, N. L., Kwok, R. T., Lam, J. W. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718-11940 (2015).
18 Li, J. et al. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem. Soc. Rev. 49, 1144-1172 (2020).
19 Yan, L., Zhang, Y., Xu, B. & Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 8, 2471-2487 (2016).
20 Feng, G. & Liu, B. Aggregation-induced emission (AIE) dots: Emerging theranostic nanolights. Acc. Chem. Res. 51, 1404-1414, doi:10.1021/acs.accounts.8b00060 (2018).
21 Zhu, L. et al. Aggregation‐induced emission and aggregation‐promoted photo‐oxidation in thiophene‐substituted tetraphenylethylene derivative. Chem. Asian J. 11, 2932-2937 (2016).
22 Antonietti, M. & Förster, S. Vesicles and liposomes: a self‐assembly principle beyond lipids. Adv. Mater. 15, 1323-1333 (2003).
23 Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 72, 1525-1568 (1976).
24 Echegoyen, L. E. et al. The first evidence for aggregation behavior in a lipophilic [2.2. 2]-cryptand and in 18-membered ring steroidal lariat ethers. Tetrahedron Lett. 29, 4065-4068 (1988).
25 Murata, K. et al. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc. 116, 6664-6676 (1994).
26 Jung, J. H., Shinkai, S. & Shimizu, T. Nanometer-level sol− gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica. Chem. Mater. 15, 2141-2145 (2003).
27 Simkiss, K. & Wilbur, K. M. Biomineralization. (Elsevier, 2012).