1 Nojima, H. et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278, 15461-15464, doi:10.1074/jbc.C200665200 (2003).
2 Saxton, R. A. & Sabatini, D. M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 168, 960-976, doi:10.1016/j.cell.2017.02.004 (2017).
3 Gai, Z. et al. Structure of the TBC1D7-TSC1 complex reveals that TBC1D7 stabilizes dimerization of the TSC1 C-terminal coiled coil region. J Mol Cell Biol 8, 411-425, doi:10.1093/jmcb/mjw001 (2016).
4 Dibble, C. C. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47, 535-546, doi:10.1016/j.molcel.2012.06.009 (2012).
5 van Slegtenhorst, M. et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 7, 1053-1057, doi:10.1093/hmg/7.6.1053 (1998).
6 Brownbridge, G. G., Lowe, P. N., Moore, K. J., Skinner, R. H. & Webb, M. R. Interaction of GTPase activating proteins (GAPs) with p21ras measured by a novel fluorescence anisotropy method. Essential role of Arg-903 of GAP in activation of GTP hydrolysis on p21ras. J Biol Chem 268, 10914-10919 (1993).
7 Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11, 1457-1466, doi:10.1016/s1097-2765(03)00220-x (2003).
8 Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes & development 17, 1829-1834, doi:10.1101/gad.1110003 (2003).
9 Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13, 1259-1268, doi:10.1016/s0960-9822(03)00506-2 (2003).
10 Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5, 578-581, doi:10.1038/ncb999 (2003).
11 Castro, A. F., Rebhun, J. F., Clark, G. J. & Quilliam, L. A. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278, 32493-32496, doi:10.1074/jbc.C300226200 (2003).
12 Inoki, K., Corradetti, M. N. & Guan, K. L. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37, 19-24, doi:10.1038/ng1494 (2005).
13 Henske, E. P., Jozwiak, S., Kingswood, J. C., Sampson, J. R. & Thiele, E. A. Tuberous sclerosis complex. Nat Rev Dis Primers 2, 16035, doi:10.1038/nrdp.2016.35 (2016).
14 Qin, J. et al. Structural Basis of the Interaction between Tuberous Sclerosis Complex 1 (TSC1) and Tre2-Bub2-Cdc16 Domain Family Member 7 (TBC1D7). J Biol Chem 291, 8591-8601, doi:10.1074/jbc.M115.701870 (2016).
15 Sun, W. et al. Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations. Nat Commun 4, 2135, doi:10.1038/ncomms3135 (2013).
16 Zech, R., Kiontke, S., Mueller, U., Oeckinghaus, A. & Kummel, D. Structure of the Tuberous Sclerosis Complex 2 (TSC2) N Terminus Provides Insight into Complex Assembly and Tuberous Sclerosis Pathogenesis. J Biol Chem 291, 20008-20020, doi:10.1074/jbc.M116.732446 (2016).
17 Scrima, A., Thomas, C., Deaconescu, D. & Wittinghofer, A. The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues. The EMBO journal 27, 1145-1153, doi:10.1038/emboj.2008.30 (2008).
18 Gao, X. & Pan, D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes & development 15, 1383-1392, doi:10.1101/gad.901101 (2001).
19 Li, Y., Inoki, K. & Guan, K. L. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol Cell Biol 24, 7965-7975, doi:10.1128/MCB.24.18.7965-7975.2004 (2004).
20 Santiago Lima, A. J. et al. Identification of regions critical for the integrity of the TSC1-TSC2-TBC1D7 complex. PLoS One 9, e93940, doi:10.1371/journal.pone.0093940 (2014).
21 Hoogeveen-Westerveld, M. et al. The TSC1-TSC2 complex consists of multiple TSC1 and TSC2 subunits. BMC biochemistry 13, 18, doi:10.1186/1471-2091-13-18 (2012).
22 Yu, Y. et al. Structural basis for the unique biological function of small GTPase RHEB. J Biol Chem 280, 17093-17100, doi:10.1074/jbc.M501253200 (2005).
23 Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338, doi:10.1126/science.277.5324.333 (1997).
24 Scheffzek, K. & Ahmadian, M. R. GTPase activating proteins: structural and functional insights 18 years after discovery. Cell Mol Life Sci 62, 3014-3038, doi:10.1007/s00018-005-5136-x (2005).
25 Mishra, A. K. & Lambright, D. G. Invited review: Small GTPases and their GAPs. Biopolymers 105, 431-448, doi:10.1002/bip.22833 (2016).
26 Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghofer, A. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273, 115-117, doi:10.1126/science.273.5271.115 (1996).
27 Daumke, O., Weyand, M., Chakrabarti, P. P., Vetter, I. R. & Wittinghofer, A. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 429, 197-201, doi:10.1038/nature02505 (2004).
28 Li, Y., Inoki, K., Vikis, H. & Guan, K. L. Measurements of TSC2 GAP activity toward Rheb. Methods Enzymol 407, 46-54, doi:10.1016/S0076-6879(05)07005-9 (2006).
29 Marshall, C. B. et al. Characterization of the intrinsic and TSC2-GAP-regulated GTPase activity of Rheb by real-time NMR. Sci Signal 2, ra3, doi:10.1126/scisignal.2000029 (2009).
30 Hansmann, P. et al. Structure of the TSC2 GAP Domain: Mechanistic Insight into Catalysis and Pathogenic Mutations. Structure, doi:10.1016/j.str.2020.05.008 (2020).
31 Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 47, D941-D947, doi:10.1093/nar/gky1015 (2019).
32 Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4, 648-657, doi:10.1038/ncb839 (2002).
33 Hodges, A. K. et al. Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin. Hum Mol Genet 10, 2899-2905, doi:10.1093/hmg/10.25.2899 (2001).
34 Dufner Almeida, L. G. et al. Comparison of the functional and structural characteristics of rare TSC2 variants with clinical and genetic findings. Hum Mutat 41, 759-773, doi:10.1002/humu.23963 (2020).
35 Hoogeveen-Westerveld, M. et al. Functional assessment of variants in the TSC1 and TSC2 genes identified in individuals with Tuberous Sclerosis Complex. Hum Mutat 32, 424-435, doi:10.1002/humu.21451 (2011).
36 Nellist, M. et al. Distinct effects of single amino-acid changes to tuberin on the function of the tuberin-hamartin complex. Eur J Hum Genet 13, 59-68, doi:10.1038/sj.ejhg.5201276 (2005).
37 Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-Kinase/Akt pathway. Molecular Cell 10, 151-162, doi:Doi 10.1016/S1097-2765(02)00568-3 (2002).
38 Cai, S. L. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. The Journal of cell biology 173, 279-289, doi:10.1083/jcb.200507119 (2006).
39 Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590, doi:10.1016/s0092-8674(03)00929-2 (2003).
40 Li, Y., Inoki, K., Vacratsis, P. & Guan, K. L. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J Biol Chem 278, 13663-13671, doi:10.1074/jbc.M300862200 (2003).
41 Shumway, S. D., Li, Y. & Xiong, Y. 14-3-3beta binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin. J Biol Chem 278, 2089-2092, doi:10.1074/jbc.C200499200 (2003).
42 Demetriades, C., Plescher, M. & Teleman, A. A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nature communications 7, 10662, doi:10.1038/ncomms10662 (2016).
43 Su, Q. P. et al. Vesicle Size Regulates Nanotube Formation in the Cell. Sci Rep 6, 24002, doi:10.1038/srep24002 (2016).
44 Menon, S. et al. Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome. Cell 156, 771-785, doi:10.1016/j.cell.2013.11.049 (2014).
45 Demetriades, C., Doumpas, N. & Teleman, A. A. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156, 786-799, doi:10.1016/j.cell.2014.01.024 (2014).
46 Dere, R., Wilson, P. D., Sandford, R. N. & Walker, C. L. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS One 5, e9239, doi:10.1371/journal.pone.0009239 (2010).
47 McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605-611, doi:10.1038/nature04398 (2005).
48 Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5, 53-55, doi:10.1038/nmeth1139 (2008).
49 Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152, 36-51, doi:10.1016/j.jsb.2005.07.007 (2005).
50 Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331-332, doi:10.1038/nmeth.4193 (2017).
51 Zhang, K. Gctf: Real-time CTF determination and correction. J Struct Biol 193, 1-12, doi:10.1016/j.jsb.2015.11.003 (2016).
52 Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5, doi:ARTN e18722 10.7554/eLife.18722 (2016).
53 Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).
54 Pettersen, E. F. et al. UCSF chimera - A visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612, doi:10.1002/jcc.20084 (2004).
55 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 2126-2132, doi:10.1107/S0907444904019158 (2004).
56 Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D 58, 1948-1954, doi:10.1107/S0907444902016657 (2002).
57 Amunts, A. et al. Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Science 343, 1485-1489, doi:10.1126/science.1249410 (2014).
58 Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66, 12-21, doi:10.1107/S0907444909042073 (2010).
59 Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25, doi:10.1002/pro.3235 (2018).
60 Cairns, B. R., Kim, Y. J., Sayre, M. H., Laurent, B. C. & Kornberg, R. D. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci U S A 91, 1950-1954, doi:10.1073/pnas.91.5.1950 (1994).