1. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc. Natl. Acad. Sci. USA. 2006; 103:18054-18059.
2. Wang K, Wang Z, Li F, Ye W, Wang J, Song, G, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 2012; 44:1098-1103.
3. Bao Y, Hu G, Flagel LE, Salmon A, Bezanilla M, Paterson AH, et al. Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc. Natl Acad. Sci. USA. 2011; 108: 21152-21157.
4. Wendel JF. Genome evolution in polyploids. Plant Mol. Biol. 2000; 42:225-249.
5. Zhang, HB, Li YN, Wang BH, Chee PW. Recent advances in cotton genomics. Int. J. Plant Genomics. 2008; 742304.
6. Yu J, Kohel RJ, Smith CW. The construction of a tetraploid cotton genome wide comprehensive reference map. Genomics. 2010; 95:230-240.
7. Bell AA, Stipanovic RD. The chemical composition, biological activity and genetics of pigment glands in cotton. Proc. Beltwide Cotton Prod. Res. Conf. 1977; 244-258.(National Cotton Council: Memphis, TN, USA).
8. Zhang WJ, Xu ZR, Pan XL, Yan XH, Wang YB. Advances in gossypol toxicity and processing effects of whole cottonseed in dairy cows feeding. Livest. Sci. 2007; 111: 1-9.
9. Cai YF, Xie YF, Liu JG. Glandless seed and glanded plant research in cotton. A review. Agron Sustain Dev. 2010; 30: 181-190.
10. Gao, W, Long L, Zhu LF, Xu L, Gao WH, Sun LQ, et al. Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol. Cell Proteomics. 2013; 12:3690-3703.
11.Tian X, Ruan JX, Huang JQ, Yang CQ, Fang X, Chen ZW, et al. Characterization of gossypol biosynthetic pathway. Proc. Natl Acad. Sci. USA. 2018; 115: E5410-E5418.
12. McMichael SC. Glandless boll in upland cotton and its use in the study of natural crossing. Agronomy Journal. 1954; 46:527-528.
13. McMichael SC. Hopi Cotton, a Source of Cottonseed Free of Gossypol Pigments 1.Agronomy journal. 1959; 51: 630-630.
14. McMichael SC. Combined effects of glandless genes gl2 and gl3 on pigment glands in the cotton plant. Agronomy Journal. 1960; 52:385-386.
15. Gutierrez M, Vrdoljak J, Ricciardi A. Development of gossypol-glandless strains of cotton. In Induced Mutations and Plant Improvement, pp. 1972; 397-404. Vienna, Austria: International Atomic Energy Agency.
16. Lee JA. The genomic allocation of the principal foliar-gland loci in Gossypium hirsutum and Gossypium barbadense. Evolution.1965; 19:182-188.
17. McCarty JC, Hedin PA, Stipanovic RD. Cotton Gossypium spp. plant gossypol contents of selected GL2 and GL3 alleles. J. Agric. Food Chem. 1996; 44: 613-616.
18. Scheffler JA, Romano GB. Registration of GVS1, GVS2, and GVS3 upland cotton lines with varying gland densities and two near-isogenic lines, GVS4 and GVS5. J. Plant Reg.2012; 6:190-194.
19. Miravalle RJ, Hyer AH. Identification of the Gl2 gl2 Gl3gl3 genotype in breeding for glandless cottonseed. Crop Sci. 1962; 2: 395-397.
20. Endrizi JE, Turcotte EL, Kohel RJ. Genetics, cytology, and evolution of Gossypium. Adv. Genet. 1985; 23: 271-375.
21. Percy R, Hendon B, Bechere E, Auld D. Qualitative genetics and utilization of mutants. In Cotton (Fang, D.D. and Percy, R.G., eds), pp. 2015; 155-186. Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc.
22. Lee JA. Genetical studies concerning the distribution of pigment glands in the cotyledens and leaves of upland cotton. Genetics.1962; 47:131-142.
23. Lusas EW, Jividen GM. Glandless cottonseed: a review of the first 25 years of processing and utilization research. J. Am. Oil Chem. Soc. 1987; 64: 839-854.
24. Barrow JR, Davis DD. Gl2s-a new allele for pigment glands in cotton. Crop Sci. 1974; 14:325-326.
25. Kohel RJ, Lee JA. Genetic analysis of Egyptian glandless cotton. Crop Sci. 1984; 24:1119-1121.
26. Zhang TZ, Zhang XL, Jin L, Chen ZX, Guo WZ. Genetic identification of a new gland forming gene in upland cotton. Acta Agron Sin. 2001; 27: 75-79.
27. Zhu SJ, Reddy N, Jiang YR, Ji DF. Breeding, introgression and inheritance of delayed gland morphogenesis trait from Gosspium bickii into upland cotton germplasm. Chin Sci Bull. 2004; 49: 2470-2476
28. Afifi A, Bary AA, Kamel SA. and Heikal I. Bahtim 110, a new strain of Egyptian cotton free from gossypol. Empire Cotton Growing Rev. 1966; 43:112-120.
29. Carvalho LPD, Vieira RdM. Expression of the Gossypium barbadense Gl2e gene in Gossypium hirsutum annual cotton. Rev De Oleaginosas Fibrosas. 2000; 4: 39-44.
30. Dong C, Ding Y, Guo W, Zhang T. Fine mapping of the dominant glandless Gene Gl2ein Sea-island cotton (Gossypium barbadense L.).Chin Sci Bull.2007; 52: 3105-3109. doi:10.1007/s11434-007-0468-6.
31. Tang CM, Min LF, Pan JJ, Jin SY. Genetic analysis for Hai1 strain of glandless cotton (G. barbadence L.): interaction between Gl2e and Gl1. Cotton Sci. Sin. 1996; 8: 138-140.
32. Cheng Hl, Lu CR, Yu JZ, Zou CS, Zhang, YP, Wang QL, et al. Fine mapping and candidate gene analysis of the dominant glandless gene Gl2e in cotton (Gossypium spp.). Theor.Appl. Genet. 2016; 129:1347-1355.
33. Ma D, Hu Y, Yang CQ, Liu BL, Fang L, Wan Q, et al. Genetic basis for glandular trichome formation in cotton. Nat. Commun. 2016; 7:10456.
34. Janga, MR, Pandeya D, Campbell LM, Konganti K, Villafuerte ST, Puckhaber L, et al. Genes regulating gland development in the cotton plant. Plant Biotechnol. J. 2019; 17: 1142-1153.
35. Gao W, Xu FC, Long Lu, Li Y, Zhang JL, Chong L, et al. The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton. Plant Biotechnology Journal. 2020; 18, 1573-1584.
36. Cai Y, Mo JC, Zeng Y, Ren WW, Xu Y, Wang SH, et al. Cloning of cDNAs associated with the development of pigment gland of Gossypium by suppression subtractive hybridization. J. Beijing Forestry Univ. 2003; 25, 6-10.
37. Cai YF, Cai XY, Wang QL, Wang P, Zhang Y, Cai CW, et al. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnology Journal. pp. 2019; 1-15. doi: 10.1111/pbi.13249.
38. Chang PA, Li B, Ni XM, Xie YF, Cai YF. Molecular cloning and expression analysis of a RanBP2 zinc finger protein gene in upland cotton (Gossypium hirsutum L.). Colloids and Surfaces B: Biointerfaces. 2007; 55: 153-158.
39. Xu YH, Wang JW, Wang S, Wang JY, Chen XY. Characterization of GaWRKY1, a cotton transcription factor thatregulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiol. 2004; 135: 507-515.
40. Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell. 2012; 24: 2635-2648.
41. Xie YF, Wang BC, Li B, Cai YF, Xie L, Xia YX, et al. Construction of cDNA library of cotton mutant (Xiangmian-18) library during gland forming stage. Colloids Surf B Biointerfaces. 2007; 60: 258-263.
42. Liu WZ, Zhou YF, Wang X, Jiao ZJ. Programmed cell death during pigment gland formation in Gossypium hirsutum leaves. Plant Biology. 2010; 12: 895-902.
43. Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, et al. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol. 2011; 190: 351-368.
44. Takahashi H, Yamauchi T, Colmer TD, Nakazono M. Aerenchyma formation in plants. Plant Cell Monogr. 2014; 21: 247-265.
45. Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M. 2015. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Ann. Bot. 2015; 115: 879-294.
46. Müller M, Munné-Bosch S. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling. Plant Physiol [Internet]. 2015; 169: 32-41.
Available from: http://www.plantphysiol.org/lookup/doi/10.1104/pp.15.00677.
47. Dey S, Corina VA. Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Front Plant Sci [Internet]. 2015; 6:1-7.
48. Huang PY, Catinot J, Zimmerli L. Ethylene response factors in Arabidopsis immunity. J Exp Bot. 2016; 67:1231-41.
49. Rotenberg D, Thompson TS, German TL, Willis DK. Methods for effective real-time RT-PCR analysis of virus-induced gene silencing. J Virol Methods. 2006; 138: 49-59.
50. Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell (Suppl). 2002; 14:165-183.
51. Shinshi H, Usami S, Ohme-Takagi M. Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol Biol.1995;
27:923-932
52. Sessa G, Meller Y, Fluhr R. A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-1b gene. Plant Mol Biol. 1995; 28:145-153.
53. Jiang LL, Lian XF, Fan MS. Role of programmed cell death in adaptation of plant to environmental stress. Chinese Bulletin of Life Sciences. 2005; 3: 267-270.
54. Ni, XL. Aerenchyma formation and their relationship to programmed cell death in
three plants. (Ph D dissertation). Xibei University.2014
55.Yuan YL, Chen YH, Tang CM, Jing SR, Liu SL, Pan JJ, et al. Effects of the dominant glandless gene Gl2e on agronomic and fiber characters of upland cotton. Plant Breed. 2000; 119: 59-64.
56. Shi JB, Wang N, Zhou H, Xu QH, Yan GT. Transcriptome analyses provide insights into the homeostatic regulation of axillary buds in upland cotton (G. hirsutum L.). BMC Plant Biology. 2020; (8): 228-241.
57. Nayak SS; Pradhan S; Sahoo D; Parida A. De novo transcriptome assembly and analysis of Phragmites karka, an invasive halophyte, to study the mechanism of salinity stress tolerance. Scientific RepoRtS. 2020; (10): 5192. https://doi.org/10.1038/s41598-020-61857-8.
58. Tang ZM, Fan YJ, Zhang J, Zheng CC, Chen AY, Sun YX, Guo HX, Wu JF, Li TT, Fan YP, Lian X, Guo HH, Ma XF, Chen HF, Zeng FC. Quantitative metabolome and transcriptome analysis reveals complex regulatory pathway underlying photoinduced fiber color formation in cotton. Gene. 2020; https://doi.org/10.1016/j.gene.2020.145180.
59. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2<sup>-ΔΔCT</sup> Method. Methods. 2001; 25: 402-408. doi:10.1006/meth.2001.1262. PubMed: 11846609.
60. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP. Applications and advantages of virus-induced silencing for gene function studies in plant. Plant J. 2004; 39: 734-746.
61. Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J. 2011; 66:293-305
62. Zhang JX, Wang FR, Zhang CY, Zhang JH, Chen Y, Liu GD, et al. A novel VIGS method by agro inoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response. Plant Cell Reports. 2018; 37: 1091-1100.
63. Gao XQ, Shan LB. Functional Genomic Analysis of Cotton Genes with Agrobacterium-Mediated Virus-Induced Gene Silencing. Methods Mol Biol. 2013; 975:157-165. doi:10.1007/978-1-62703-278-0_12.
64. Yi CX, Zhang J, Chan KM, Liu XK, Hong Y. Quantitative real-time PCR assay to detect transgene copy number in cotton (Gossypium hirsutum). Anal. Biochem. 2008; 375:150-152.
65. Stefan O, Grit K, Jonathan G. Increased Terpenoid Accumulation in Cotton (Gossypium hirsutum) Foliage is a General Wound Response. J Chem Ecol. 2008; 34:508-522.