1 Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy 3, 267 (2018).
2 Xu, J. et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)‐ion batteries. Advanced Science 4, 1700146 (2017).
3 Kwon, T.-w., Choi, J. W. & Coskun, A. The emerging era of supramolecular polymeric binders in silicon anodes. Chemical Society Reviews 47, 2145-2164 (2018).
4 Eshetu, G. G. & Figgemeier, E. Confronting the Challenges of Next‐Generation Silicon Anode‐Based Lithium‐Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders. ChemSusChem 12, 2515-2539 (2019).
5 Cao, P., Pan, Y., Gao, S., Sun, F. & Yang, H. Polymer Binders Constructed via Dynamic Non‐covalent Bonds for High‐capacity Silicon‐based Anodes. Chemistry–A European Journal (2019).
6 Li, P. et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials 15, 422-446 (2018).
7 Feng, K. et al. Silicon‐Based Anodes for Lithium‐Ion Batteries: From Fundamentals to Practical Applications. Small 14, 1702737 (2018).
8 Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano letters 12, 3315-3321 (2012).
9 Nguyen, H. T. et al. Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes. Journal of Materials Chemistry 22, 24618-24626 (2012).
10 Schwarz, D. et al. Twinned Growth of Metal‐Free, Triazine‐Based Photocatalyst Films as Mixed‐Dimensional (2D/3D) van der Waals Heterostructures. Advanced Materials 29, 1703399 (2017).
11 Möhwald, H., Bliznyuk, V. & Kirstein, S. Structure, energy and charge transport in two-dimensional crystals of cyanine dyes. Synthetic metals 61, 91-96 (1993).
12 Li, Y., Xu, L., Liu, H. & Li, Y. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chemical Society Reviews 43, 2572-2586 (2014).
13 Vyas, V. S. et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature communications 6, 1-9 (2015).
14 Uhlig, F. & Marsmann, H. C. 29Si NMR some practical aspects. Gelest Catalog, 208-222 (2008).
15 Park, C.-M. et al. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. Journal of Materials Chemistry 20, 4854-4860 (2010).
16 Mijatovic, J., Binder, W. H. & Gruber, H. Characterization of surface modified silica nanoparticles by 29 Si solid state NMR spectroscopy. Microchimica Acta 133, 175-181 (2000).
17 Larkin, P., Makowski, M. & Colthup, N. The form of the normal modes of s-triazine: infrared and Raman spectral analysis and ab initio force field calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55, 1011-1020 (1999).
18 Li, H. et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 135, 181-191 (2000).
19 Philippe, B. et al. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries–A photoelectron spectroscopy study. Chemistry of Materials 25, 394-404 (2013).
20 Radvanyi, E., De Vito, E., Porcher, W. & Larbi, S. J. S. An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. Journal of Analytical Atomic Spectrometry 29, 1120-1131 (2014).
21 Nguyen, C. C., Yoon, T., Seo, D. M., Guduru, P. & Lucht, B. L. Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS applied materials & interfaces 8, 12211-12220 (2016).
22 Ferraresi, G., Czornomaz, L., Villevieille, C., Novák, P. & El Kazzi, M. Elucidating the surface reactions of an amorphous Si thin film as a model electrode for Li-ion batteries. ACS applied materials & interfaces 8, 29791-29798 (2016).
23 Schwarz, D. et al. Tuning the porosity and photocatalytic performance of triazine‐based graphdiyne polymers through polymorphism. ChemSusChem 12, 194-199 (2019).
24 Xu, J. lnvestigation of the Critical Role of Polymeric Binders for Silicon Negative Electrodes in Lithium-lon Batteries. (2016).
25 Koo, B. et al. A highly cross‐linked polymeric binder for high‐performance silicon negative electrodes in lithium ion batteries. Angewandte Chemie International Edition 51, 8762-8767 (2012).
26 Putri, L. K. et al. Engineering nanoscale p–n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A 6, 3181-3194 (2018).
27 Sakaushi, K. et al. An energy storage principle using bipolar porous polymeric frameworks. Angewandte Chemie International Edition 51, 7850-7854 (2012).
28 Sezen, H. & Suzer, S. Communication: Enhancement of dopant dependent x-ray photoelectron spectroscopy peak shifts of Si by surface photovoltage. The Journal of Chemical Physics 14, 141102 (2011).
29 Wertheim, G., Van Attekum, P. T. M. & Basu, S. Electronic structure of lithium graphite. Solid State Communications 33, 1127-1130 (1980).
30 Andersson, A. M., Henningson, A., Siegbahn, H., Jansson, U. & Edström, K. Electrochemically lithiated graphite characterised by photoelectron spectroscopy. Journal of Power Sources 119, 522-527 (2003).
31 Ren, W.-F. et al. Improving the Electrochemical Property of Silicon Anodes through Hydrogen-Bonding Cross-Linked Thiourea-Based Polymeric Binders. ACS Applied Materials & Interfaces (2020).
32 Obrovac, M. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid-State Letters 7, A93-A96 (2004).
33 Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75-79 (2011).
34 Urbanski, A. et al. An Efficient Two-Polymer Binder for High-Performance Silicon Nanoparticle-Based Lithium-Ion Batteries: A Systematic Case Study with Commercial Polyacrylic Acid and Polyvinyl Butyral Polymers. Journal of The Electrochemical Society 166, A5275-A5286 (2019).
35 Karkar, Z., Guyomard, D., Roué, L. & Lestriez, B. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochimica Acta 258, 453-466 (2017).
36 Chen, Z. et al. High‐areal‐capacity silicon electrodes with low‐cost silicon particles based on spatial control of self‐healing binder. Advanced Energy Materials 5, 1401826 (2015).
37 Choi, S., Kwon, T.-w., Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279-283 (2017).
38 Higgins, T. M. et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative Electrodes. Acs Nano 10, 3702-3713 (2016).
39 Jeong, Y. K. et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy & Environmental Science 8, 1224-1230 (2015).
40 Liu, G. et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Advanced Materials 23, 4679-4683 (2011).
41 Song, J. et al. Interpenetrated gel polymer binder for high‐performance silicon anodes in lithium‐ion batteries. Advanced functional materials 24, 5904-5910 (2014).
42 Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature chemistry 5, 1042 (2013).
43 Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature communications 4, 1943 (2013).
44 Zeng, W. et al. Enhanced Ion Conductivity in Conducting Polymer Binder for High‐Performance Silicon Anodes in Advanced Lithium‐Ion Batteries. Advanced Energy Materials 8, 1702314 (2018).
45 Zhang, G. et al. A Quadruple‐Hydrogen‐Bonded Supramolecular Binder for High‐Performance Silicon Anodes in Lithium‐Ion Batteries. Small 14, 1801189 (2018).
46 Urbanski, A., Ulhmann, P., Huang, J. & Bojdys, M. J. Anode und Verfahren zu ihrer Herstellung. Germany patent DE102019110450 (2020).