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Abstract

The Yangtze River Basin (YRB), China, experienced record-breaking multiple season
droughts in 2022, but also other severe drought events in recent history. This study
examined the spatiotemporal characteristics of the 2022 drought in the YRB and
compared this event with other extreme drought events in 1951 to 2022 from multiple
perspectives, including spatial distribution, temporal evolution, return period, and
drought losses. Six other extreme drought events were selected by the severity of water
deficiency. The results showed that a “whole-basin” drought, which covered nearly the
entire region, was evident in the summer and autumn of 2022 compared with other
drought years. The return period was more than 1000 years (considering both
temperature and precipitation), also severer than the six other drought years. Although
the 2022 drought was much more extreme than other drought years from a natural
perspective, the actual crop impacted area ratio was less than those in other drought
years. This indicates the importance of drought relief measures. As for the drought
attribution in the YRB, the El Nifio/Southern Oscillation (ENSO) played a key role in
explaining its occurrence, significant at different lag times. These results may help
policymakers to comprehensively understand the typical extreme droughts in the YRB
and rationally allocate funds for drought relief.

Keywords: Drought distribution; return period; drought impact; Yangtze River Basin
1 Introduction

Under the influence of global warming, the frequency of hot and dry events shows an
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increasing tendency, in both arid and humid regions, and with the evident potential
expansion of drylands in the future (Liu et al., 2023a), the drought risk would be much
higher. For instance, Samaniego et al. (2018) showed that compared with the Paris
target of 1.5 K, a scenario with a global average warming of 3 K would increase the
area of drought in Europe. Drought events similar to the 2003 European drought (Ciais
et al., 2005) would occur more than twice as often.

A highly heterogeneous connectivity structure underlying global drought events
has been detected, implicating the possibility of simultaneous large-scale droughts
across multiple continents (Mondal et al., 2023). In the summer of 2022, many regions
in the Northern Hemisphere experienced record-breaking extreme drought events

(NOAA, 2022), such as the Europe, the United States (https://ndma.gov.in/), and

southern China. At the peak of the 2022 drought in China, 52.45 million people and
6.09 million hectares of crops were affected, and direct economic losses amounted to
CNY 51.28 billion (MEMC, 2023).

Studies have suggested that climate change not only increases the probability of
drought but also changes drought characteristics (Dai, 2013; Zhao et al., 2023). Drought
events have set new extreme records throughout history, and with future global
warming, the projected percentage changes are higher for the frequency of rarer events
(Zhou and Qian, 2021). The highest frequency and maximum duration of drought have
been concentrated in East Asia, especially in North and Southwest China (Zhang and

Zhou, 2015; Ding and Gao, 2020), and drought range in the south of China has
3
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expanded significantly, occurring frequently since the beginning of the 21st century
(Zhang et al., 2020).

The YRB is located in southern China and spans three major economic zones:
eastern, central, and western China. It accounts for nearly 20% of China's land area and
more than 36% of the China's water resources (Guan et al., 2015; Liu et al., 2016).
Although the YRB's huge water resource endowment is its greatest characteristic, the
frequency of droughts has also increased throughout its history due to the uneven spatial
and temporal distributions of precipitation (Gemmer et al., 2008). The upper reaches of
the YRB (mainly Sichuan and Chongqing) were influenced by severe drought during
the summer of 2006 (Zhang et al., 2008a; Dai et al., 2011). The middle and lower
reaches of the YRB were reported to have suffered a drought event with 50-year return
period during the spring of 2011 (Lu et al., 2014). In 2019, a record-breaking drought
propagated across the mid—lower reaches of the YRB during the post-monsoon season
(Xu et al., 2020). In the summer of 2022, a record-breaking drought occurred again in
the YRB (Liang et al., 2023; Liu et al., 2023b), which led to the shrinkage of Poyang
Lake and power limitation in Sichuan Province (Sun et al., 2022). Unfortunately, in the
future, the drought magnitude is anticipated to shift from moderate and severe to
extreme and exceptional (Sun et al., 2019), and the risk of an energy deficit caused by
extreme drought in the YRB will also be increased (Liu et al., 2023c). Despite the
natural evolution characteristics of a single drought event were analyzed thoroughly,

the lack of actual crop area affected by drought and typical droughts comparison
4
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limiting systematic analysis of drought severity.

Researchers have also attempted to investigate the physical drivers of the evolution
of drought. The ENSO is regarded as the predominant large-scale driver of compound
droughts, with 68% of the historical events in the world occurring under El Nifio or La
Nifia conditions (Steiger et al., 2021; Singh et al., 2022). Jiang et al. (2006) showed that
El Nifio events are strongly associated with floods, whereas La Nifia events are strongly
associated with droughts in the YRB. Xu et al. (2020) suggested that a strong central
Pacific El Nifio event contributed ~60% of the extreme 2019 drought intensity in the
YRB owing to the tropical Pacific air—sea interaction. However, the influence of the
ENSO on the distribution of typical drought events with different lag times in the YRB
remains unknown.

Past studies mainly focused on the 2022 drought in the YRB at the certain point of
evolution feature or attribution, rather than comparing its severity by the combined
characterization of drought hazards both from natural and actual impact loss aspects.
Extreme droughts occur frequently in the YRB, and once an extreme drought occurs, it
is often said to be a historically severe record. Lacking information on the droughts’
severity comparison means that the perception cannot be accurately and
comprehensively for the public and decision-making persons. Thus, there is great
scientific and societal interest in comparatively understanding the severity of 2022
drought in the YRB.

In this study, we will comprehensively analyze and judge the severity of 2022
5
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drought in the YRB from the following aspects: (1) analyzing the drought distribution
pattern, drought evolution, drought return period compared with other typical historical
droughts. (2) not only considering meteorological feature but also comparing the actual
drought impact loss. (3) investigating the effect of the ENSO on the 2022 drought.

2 Materials and methods

2.1 Materials

To investigate the severity of 2022 drought in the YRB, climate elements, the recorded
data about the actual drought impact, and the ENSO index were used.

The climate elements were monthly precipitation (P) and maximum and minimum
surface air temperatures (Tmax and Tmin) from January 1951 to December 2022, which
were provided by the ECMWF (Mufioz Sabater, 2019, ERAS5-Land monthly averaged
data, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-eraS-land-monthly-
means?tab=form). The datasets had a spatial resolution of 0.1° x 0.1°.

Actual drought loss data consist primarily of crop areas impacted by drought and
total sowing areas in the YRB. Administrative provinces of Sichuan, Chongqing,
Guizhou, Hubei, Hunan, Jiangxi, and Anhui (located in the YRB) were considered. The
total sowing areas and drought affected areas of these provinces during 1951-2022 were
obtained from the China Flood and Drought Disaster Prevention Bulletin
(http://www.mwr.gov.cn/sj/#tjgb) and the study conducted by Zhang et al. (2008b).

The ENSO index was obtained based on the tropical Pacific Ocean Sea surface

temperature anomaly (SSTA) in the Nifio 3.4 region (5°N-5°S, 120°-170°W), which
6
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was provided by the NOAA Climate Prediction Center

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

2.2 Research methods

2.2.1 Typical historical drought selection

Despite being in China's humid zone, the YRB continues to experience varying degrees
of drought each year (Wang and Yuan, 2021). Considering that a water deficit for a
period of time is the basic requirement for a drought event, we first focused on the
difference between precipitation (P) and potential evapotranspiration (PET) in the YRB
and defined extreme water deficit years with lower than the 10% quartile of the
difference between annual P and PET. The similarities and differences between these
historical drought years and 2022 drought were then investigated.

2.2.2 Drought quantification

Considering both P and PET, the standardized precipitation evapotranspiration index
(SPEI) on a 3-month time scale was used to quantify the YRB drought phenomenon. It
can be calculated in three main steps: (1) calculate the difference between monthly P
and PET on 3-month time scales (abbreviated as D series); (2) calculate the cumulative
distribution function (CDF) of the D series based on the log-logistic distribution
function; and (3) normalize the CDF to the standard normal distribution and obtain the
SPEI values (Vicente-Serrano et al. 2010). Five drought degrees were categorized: non-

drought (SPEI > -0.5), light drought (-1 < SPEI <-0.5), moderate drought (-1.5 < SPEI
7
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<-1), severe drought (-2 < SPEI <-1.5), and extreme drought (SPEI <-2) (CMA, 2017).
2.2.3 Methods for drought severity analysis

First, the Empirical Orthogonal Function (EOF) was used for the spatiotemporal
decomposition of drought in different season, and help to understand the main pattern
mode of 2022 drought in each season during the study period. EOF analysis mainly
involves two components: eigenvectors (EOFs), and principal components (PCs). In
this study, spring, summer, autumn, and winter drought were indicated by SPEI in May,
August, November, and February, respectively. The detail calculation process could be
found in the literature of Zhou and Liu (2017).

Second, the distributions of different drought degrees were presented, and the
exchange between drought degrees from January to December were analyzed. This
helps to understand the process of 2022 drought propagation.

Third, we used the joint return period to compare the 2022 drought severity from
both P and T. (1) According to the Kolmogorov—Smirnov (K-S) test results, logistic
and generalized extreme value distributions were used to fit the respective percentages
of annual precipitation anomalies and annual mean temperature anomalies during 1951-
2022 in the YRB. (2) The Frank copula function was used to fit these bivariate variables,

and obtained the joint probability (Pjoni: (P < Py, T > Tj)). Finally, one-dimensional

and two-dimensional drought return period were obtained (Return perod =

).

joint

More detail calculation of drought return period based on copula function could be

found in Zhao et al. (2023a).
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3 Results

3.1 Trends of precipitation and temperature in the YRB

On average, climate element of P in the YRB presented a decreasing trend in almost all
months (except January, June, and November), and the highest downward trend rate
was in April, reaching -0.23%/a (p < 0.05). Before June 2022, the regional average P
was not the lowest compared with other years. After July 2022, P significantly
decreased in the range of -34.3% to -66.1%, reaching the lowest level in history (Figure
1).

The mean temperature (Tmean) in the YRB showed an increasing trend in each
month (except January) during the study period. The increasing trend rate was the
highest in winter, i.e., 2.95%/a and 2.65%/a (p < 0.05) in December and February,
respectively. In Figure 2, the higher Tmean in June 2022 was not rare compared with
other years, such as June 1953, 1956, 1961, 2005, 2006, 2009, 2013, and 2020-2021.
As for July and August during 1951-2022, the Tmean was extreme in 2022, especially
in August, where the Tmean was 15.3% above the perennial average value (Figure 2).

The increasing Tmean and decreasing P trends were evident at the annual scale
(Figure A.1). Herein, we considered the water deficit difference between P and PET and
took the 10% quantile as the extreme threshold to select seven years with extreme water
deficits during the past 72 years: 1953 (558 mm), 1966 (586 mm), 2006 (517 mm),
2009 (576 mm), 2011 (484 mm), 2013 (529 mm), and 2022 (383 mm). In the following

sections, the comparison between the drought characteristics in these seven years is
9
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3.2 The severity of 2022 drought compared with other historical drought years
from different perspectives

3.2.1 Drought distribution pattern

Figure 3 and Figure 4 show the first two main decomposition modes (EOF1 and EOF2)
and the time coefficients (PC1 and PC2) of the SPEI in different seasons (the
cumulative interpretation rate reached 44%).

In spring, the first mode (Figure 3(a), EOF1) showed that an east-—west opposing
distribution pattern of drought and wetness existed in the YRB, with the most
representative years being 1953 and 2011 (higher absolute PC1 values are presented in
Figure 3(a)). EOF2 showed that there was also a north—south opposing distribution
pattern of drought and wetness in the YRB, while it was not representative of these
seven typical drought years.

In summer and autumn (the flood season (JJA) in China), drought or wetness in the
whole basin was the main distribution pattern (Figure 4(b) and 4(c), EOF1), such as the
summer drought in 1953, 1966, 2006, 2013, and 2022, and the autumn drought in 1966,
2009, and 2022. The second mode indicated that there was still an east (upstream)—west
(middle and downstream) opposing distribution pattern of drought or wetness in
summer, and a north—south opposing distribution pattern in autumn. However, the
second drought distribution pattern was not evident in the seven typical drought years.

In winter, the first mode (EOF1) presented a whole-basin distribution pattern of

drought or wetness, and the second mode (EOF2) showed that the distribution pattern
11
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of drought (wetness) was mainly concentrated in the south and wetness (drought)
mainly concentrated in the north of the YRB was also usually occurred. Among the
seven typical extreme drought years, few fit the two drought distribution patterns

described above, except for 1953 and 2013, which indirectly suggests that the typical

droughts analyzed in this study did not typically occur in the winter months.

Comparatively, the distribution pattern of the summer drought in 2022 was similar

to that in other drought years, while the 2022 drought lasted from summer to autumn

and winter, which was rare among other historical droughts.
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Figure 3. The temporal and spatial distributions of drought in the YRB based on the

first EOF mode (a: spring, b: summer, c: autumn, and d: winter).
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Figure 4. The temporal and spatial distributions of drought in the YRB based on the
second EOF mode (a: spring, b: summer, c: autumn, and d: winter).
3.2.2 Drought evolution
Although the water deficit degree was in an extremely low state for 2022 drought and
other six drought years, the drought evolution process varied each month (Figure 5 and
Figure B.1-B.12).

The 1953 drought mainly occurred from January to September, and from January
to June, extreme drought was concentrated in the middle and lower reaches of the YRB.
From July to September, the drought spread to the upper reaches of the YRB, and a
pattern of drought in the entire basin formed, but the drought degree gradually

decreased. After October, the drought gradually eased (Figure B.1 and Figure B.2).
13
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In 1966, the drought distribution from January to June was scattered in the basin,
and the propagation mainly focused on light and moderate degrees of drought. After
June, the drought-impacted area began to concentrate in the middle and lower reaches
of the YRB, and the area impacted by severe and extreme drought gradually expanded
from August to October (Figure B.3 and Figure B.4).

In 2006, most parts of the YRB were covered by light and moderate drought in
May, and the area affected by severe and extreme drought gradually increased from
June to August, concentrated in the middle reaches. Finally, the severity of the drought
eased in October (Figure B.5 and Figure B.6).

The 2009 drought showed an interconversion between light and moderate drought
from March to September. The drought severity increased in the southeast and
southwest of the YRB in October and November, while it eased in December (Figure
B.7 and Figure B.8). The drought process in 2009 was similar to that in 2006.

The 2011 drought propagation was concentrated mainly from January to June.
Severe and extreme drought began to gradually shift from the southeast (lower and
middle reaches) to the northwest (upper reaches) from February to May. After May, the
drought degree began to decrease, the area impacted by severe and extreme droughts
gradually shifted to the southwest, and drought in the whole basin finally began to ease
after November (Figure B.9 and Figure B.10).

In 2013, severe and extreme droughts occurred mainly in spring, and the impacted

area was concentrated upstream of the YRB. The peak of the severe- and extreme-
14
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drought-impacted area in the southeastern YRB in July—August was smaller than the
peak in March (Figure B.11 and Figure B.12), which was similar to the drought peak
distribution in 2011, whereas before July, the drought severity and affected area were
not comparable to those in 2011.

The evolution of the 2022 drought showed obvious differences compared with
other years. From January to June, more than 50% of the basin was unaffected by
drought, and after July, the proportion of light and moderate drought started to increase,
concentrated in parts of the middle and lower reaches of the YRB. Meanwhile, the
proportion of severe and extreme droughts rapidly increased after July, spread across
the entire basin in September, and then continued until December with no mitigation

tendency (Figure 5 and Figure 6).
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Figure 6. Proportion changes in different drought degrees in 2022 in the YRB (0: non-
drought, 1: light drought, 2: moderate drought, 3: severe drought, and 4: extreme
drought).

3.2.3 Return periods of droughts
The average annual P in the YRB was ~1400 mm during 1951-2022. Among the seven
extreme water deficit years, the annual P in 2022 was the lowest, with an anomaly
percentage that reached -22.7% and the return period was close to 100 years. The annual
P in 2009 was the highest compared with the other six years, and the return period was
13 years. The annual P in 2011 was closest to that in 2022 (the anomaly percentage was
-20.7%), while the return period was ~60 years (Figure 7(a)).

The average annual Tmean in the YRB is 10.37 °C. Among the seven typical
drought years, the annual Tmean anomaly in 2022 was 1.13°C, which was the highest

compared with the other six years. The annual Tmean in 1966 was the lowest, and the
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return period was only 2 years. The return period of the Tmean in 2022 (48 years) was
lower than that of P. Furthermore, the annual Tmean in 2006 was closest to that in 2022,
with an anomaly value of 1.03°C, and the return period was 32a (Figure 7(a)). This
implies that global warming has increased the frequency of hot events and shortened

the return period of higher temperatures.
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Figure 7. Return period of drought in the YRB (a) separately and (b) considering

both lower P and higher Teman.

Figure 7(b) shows that among the seven typical extreme water deficit years, the
joint return period of high Tmean and low P in 2022 exceeded 1000 years, followed by
the drought year of 2006. The joint return periods of drought in 1953, 2009, 2011, and
2013 were concentrated around 100 years, while the joint return period in 1966 was
less than 50 years. On a natural level, the 2022 drought was the worst, and the 1966
drought was the lightest.

3.2.4 Actual agricultural losses due to drought
After the severity analysis for the 2022 drought from the point of natural feature, the
actual impact loss caused by drought is also needed. Table 1 shows the actual drought

loss in the YRB (the sum of the drought affected areas in seven provinces located in the
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YRB: Sichuan, Chongqing, Guizhou, Hubei, Hunan, Jiangxi, and Anhui) for the seven
drought years.

There was no obvious positive relationship between natural drought features and
actual drought losses. For example, if the joint return period of T and P is considered to
reflect the drought severity (Figure 7), the order of these seven years should be 2022 >
2006 > 2013 > 2009 > 2011 > 1953 > 1966. However, as for the actual drought loss
(such as the actual drought-impacted area rate), they should be ranked as 1966 >2006 >
2011 >2013 > 1953 > 2009 > 2022.

The 2006 drought event was at the most serious level among the six years (except
for 2022), whether in terms of the drought return period or the actual drought-impacted
area rate. It is worth noting that the return period of drought in 1966 was the shortest,
but the actual drought loss was higher than that in other years. The drought in 2022 was
stronger than that in other years in terms of the drought return period and drought
development evolution processes, but it had the lowest actual drought-impacted area
rate (7.89%). A similar trend was observed in 2009 and 2013. This implies that there
are uncertain associations between the occurrence of natural drought and the actual
impact of drought on crops. Although an increase in the cultivated land area will
increase the exposure risk of crop to drought, applying water conservancy projects, such
as irrigation and inter-basin water transfer projects, will reduce the actual loss to some
extent.

Table 1. Actual agricultural loss due to drought in the seven extreme drought years in
18
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Total sown area of Drought-impacted area/ Actual drought-
Year o1 ) o 5 impacted area

crops/million hm million hm

rate/%

1953 38.486 3.638 9.5
1966 40.723 9.208 22.6
2006 47.928 6.601 13.8
2009 47.523 4.233 8.9
2011 48.923 6.365 13.0
2013 49.841 5.595 11.2
2022 48.760 3.845 7.89

3.3 The impact of ENSO on drought in the YRB

Table 2 shows the correlation between the SPEI and the SSTA at different lag months.
As the lag month gradually increased, the correlation coefficients first increased and
then decreased. During the lag time of three to eight months, the positive correlation
passed the 0.05 confidence test, which indicates that the YRB is prone to experience
floods (droughts) in the whole basin several months after the SSTA is higher (lower).

To some extent, the occurrence of drought and flood events in the YRB is related to

changes in the SSTA.

Table 2. Correlation coefficients between SPEI and SSTA for different lag

months.
Lag month Correlation coefficient
1 0.010
3 0.066**
4 0.087**
5 0.099**
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0.101**

0.098%**

0.085%*
10 0.031

Note: *** indicates the correlation coefficient passed the 0.001 confidence test.

For the relationship between the SPEI and the SSTA in each month, Figure 8 shows
a significant positive correlation between winter (DJF) and spring (MAM) droughts (or
floods) and the SSTA with a lag period of one to eight months. For other months, this
positive correlation was weaker. Summer and autumn droughts (or floods) showed a
complex correlation with the SSTA, whereby the significance of the positive correlation

declined, and a negative correlation was observed.
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Figure 8. Correlation between SPEI in each month and SSTA with different lag
periods (* indicates that the results passed the 0.05 confidence test, and ** indicates

that the results passed the 0.001 confidence test).

To investigate the influence of ENSO events on the 2022 drought and other six

historical droughts in the YRB, we divided the SSTA into El Nifio events (SSTA >
20
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0.5 °C) and La Nina events (SSTA < -0.5°C). As shown in Figure 9, only the 1966
drought evolved in the context of El Nifio (Figure 9b), whereas the remaining six
drought years were influenced by La Nifia events. For the six typical drought years,
each month with SPEI persistently below -0.5 corresponded to La Nifa events at
different lag times, and the droughts tended to worsen first and then mitigate as the
number of lag months increased (the droughts in 1953, 2006, 2009, 2011, and 2013
were the more obvious ones, Figure 9a, c-f). The 2011 and 2022 drought both
corresponded to La Nifia events at different lag times; however, the drought in each
month of 2022 suffered from a persistent La Nifia effect, which ultimately led to rapid
drought aggravation in the YRB from July onwards, and the mitigation tendency was

still not obvious until December (Figure 9g).

21



361
362

363

364

365

O N e L=t ]
leslezleslezlest

=t
o ommmmm

TmmImm

RS CmuNBLI—

e

{al ey =

BN e OD =1 PSS wranusL—
e o mmmmmmmmmmmm

P=C ORI UNBLINI—  —IUI.

e I T
L vo) v vl el sl vl vl ol e e = e

(@)

Nov

Jan Feb Mar Apr May Jun ™! Aug Sep Oct Dec
(©)
06010
(071 0.60 | I
-0.59 7 2 PSP )
: 7
-0.67 |- 2
2 0.5 9 0.67 -
o [ 091 E g
-0.59.
| -0.59 |7
I 1 059,
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(e)
052 065 [T
052 065
052 650
052 AD65|
52
.57
052
) 052
B I
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(g

-1.00 -1.00

-0.94

0,94 -
3

Jan Feb Mar Apr May Jun

Jul

Aug Scp

9" -0.
089

6 [-0.94
-1.06
-0.94

-1.11
0971 -1.11
-0.891 -097
-0.94 7-0.89
-1.06 (094
094" -iv6

Nov Dec

-1

3.0
25
1.9

0.8

0.3

-03
-0.8
-1.4
-1.9
25
-3.0

-1.4

1.80
1.20
0.60
-0.00
-0.60
-1.20
-1.80

3 NaN

L 1.80
: 120
i 0.60

0.00
Lt -0.60
: -120
s -1.80

3 NaN

A 1.80
: 120
' 0.60
-0.00
Lt -0.60
9 120
: -1.80

3 NaN

=L A0 O — 1D

= o MMt ST e

[ e e L T e
{ g ol o el

=L A0 0D — 1
o emmmmmmmmmmmiem

P Swmao B L=

NBELN— =LA IO
e mmmmmmmmmmmm

ar

| |
|
61 0.80
0.0
.61 0.80
0.61 0.80 0.35
0.80
080
0.80
0.80 035
0.80
080
0.80 -0.50 -0.57
- 0301 %
\ 2050
el SN
= 7
5 < Py o
-
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(d)
056 3
= 0.86
i 9 2 —a vk
. E -
= 0 0.89 069 7
- i - -
0.8 X | 0.8 89
0.8 086 -0.8 -0,
= -068] 0.86
0.8 -0.68 | 0.86
0.8 0.8

Jan Feb Mar Apr May ™mn

Jul Aug Sep Oct Nov De

3.0
25
1.9
14
0.8
03
-03
0.8
-1.4
-1.9
25
-3.0

3.0
25

14
0.8
03
-0.3

-14
-19
2.5
-3.0

25
1.9
14
0.8
03
-0.3
-0.8
-14
-1.9

225

0%3 [-052
=053 057
0,53 [ 052
5 2053 [ 052
LY 5083 1 =c8 TS
S 053 < B
N 4 0. J-7 1 Pt hd
] 032
hed ~0.53 [-052
2050 2053052
050 053|052
061050 053
20,670,611 050 5
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1.80
1.20
0.60
-0.00
-0.60
-1.20

-1.80
O NeN

1.80
1.20
0.60
-0.00
-0.60
-1.20

80

-1.
3 NN
1.80

1.20

0.60

-0.60
-1.20

-1.80
0 NN

Figure 9. The relationship between El Nifio and La Nifia events at different lag times

and seven typical drought years (a: 1953, b: 1966, c: 2006, d: 2009, e: 2011, f: 2013,

and g: 2022. 12E means El Nifio from 12 months ago; 12L means La Nifia from 12

months ago. The dotted line indicates the SPEI. NaN means the absolute value of
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SSTA does not exceed 0.5 °C).
4 Discussion
In 2022, multiple regions of the world experienced different natural disasters. In July
and August 2022, unprecedented and long-lasting heatwaves attacked the YRB, leading
to associated droughts and wildfires with significant social impacts (Wang et al., 2023).
In this study, the severity of 2022 drought in the YRB was analyzed and compared with
other six historical extreme water deficit years. For the one- and two-dimensional return
periods of high temperature and low precipitation, the 2022 drought event in the YRB
ranked first during 1951-2022 (Figure 7), and the evolution speed also reflected the
extremeness of this drought event (Figure 5 and Figure 6).

The annual global mean temperature in 2022 was reported to be the sixth highest
since 1880 (https://www.ncei.noaa.gov/access/monitoring/monthly-
report/global/202213). By comparing the simulation results of CMIP6, Zhao et al.
(2023b) suggested that the drought risk in southern China increased significantly due
to anthropogenic climate change. For example, in 2019, there was a serious summer
and autumn drought in the middle and lower reaches of the YRB, and anthropogenic
climate change increased the likelihood of the onset speed and intensity (Wang and
Yuan, 2021). An et al. (2022) also indicated that the upper reaches of the YRB will
experience more frequent and severe extreme events as a consequence of increasing
greenhouse gas emissions. Global warming provides breeding grounds for frequent

droughts in the YRB.
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The temporal evolution of hydrological extremes is closely linked to the variability
in the Indian summer monsoon at the decadal scale. An et al. (2022) indicated that the
recent increase in the frequency of hydrological droughts is consistent with the
observed trend toward a weaker Indian summer monsoon and increasing temperatures.
In 2022, the South Asian high pressure and Western North Pacific subtropical high
pressure were coupled with each other and jointly controlled the middle reaches of the
YRB, so the significant positive geopotential height anomaly remained above the
middle reaches of the YRB for a long time, which was conducive to the development
of local subsidence (Qin et al., 2023). Hua et al. (2023) also suggested that anomalous
atmospheric circulation and persistent high pressure favored the 2022 heatwave in
Central China. The ENSO has global effects and is one of the strongest interannual-
scale signals of climate change. The occurrence of ENSO events often causes serious
climate anomalies, leading to serious meteorological disasters worldwide and huge
economic losses (Villafuerte and Matsumoto, 2015; Peng et al., 2018). In this study, the
responses of drought and wetness in the YRB to ENSO events with different lag times
were analyzed in detail. On a long timescale, there was a significant positive correlation
between drought and wetness in the YRB and the SSTA (Table 2), but it showed non-
consistency and complexity in space (Figure C.1-C.2). For example, Wang et al. (2023)
showed that the upper reaches of the YRB were less affected by the ENSO and showed
a more stable water storage signal. Zhang et al. (2004) found that in EI Nifo years, the

probability of drought in the upper reaches of the YRB was higher, while in La Nifa
24
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years, the probability of flooding in the upper reaches of the YRB was higher.
Considering the whole basin, the effects of La Nina (SSTA < -0.5°C) on the 2022
drought and other historical droughts years in the YRB were evident in this study
(Figure 9). The rare “triple-dip” La Nifia recorded during 2020-2022 may be a reason
for the 2022 extreme drought in the YRB. In the future, the occurrence of consecutive
La Nina events is expected to increase under global climate warming (Geng et al., 2023),
which means the higher extreme drought risk for the YRB.

Climate change forces countries to adapt to intensifying natural hazards. Besides
the changing climate itself, the drought tolerance also determined the impact due to
drought. In recent years, dams have been designed and built with larger installed
hydropower capacity (Chen et al., 2016). Severe droughts do not necessarily lead to
severe drought impacts to the same extent because of the utilization of engineering (i.e.,
reservoir construction, South-North Water Transfer Project, and irrigation technology,
and so on) and non-engineering (i.e., water-saving propagation, drought planning
documents, drought supplies stockpile, and so on) measures to combat drought. For
example, in August and September 2022, Changjiang Water Resources Commission
(PRC) has twice implemented the joint scheduling operation of the YRB Reservoir
Group to combat drought and protect water supply, scheduling more than 70 reservoirs
and two lakes (Dongting Lake and Poyang Lake), and 2.9 million hm? of irrigated areas
were secured with water for crops irrigation. Unfortunately, the simulation results under

different climate scenarios indicate that events such as the 2022 drought will become
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normal in the future (MA and Yuan, 2023), which may pose a great challenge to the
drought resistance of the reservoir group in the YRB, especially in the context of
uncertain future climatic conditions.

5 Conclusions

The severity of 2022 drought in the YRB was analyzed, and the distinctions and
commonalities between typical drought events and 2022 drought were also compared
and explored. The drought distribution pattern covering the entire basin in 2022 was
stronger than that in other years. Although the degree of water deficit was similar on an
annual scale, the evolution of the drought events varied. The persistent La Nifia events,
and the superposition of extremely high T and low P, made the 2022 drought
significantly more severe than the other six drought events at the level of natural water
scarcity, while the actual crop loss impacted by 2022 drought was lower than that of the
other droughts. Given the increase in the occurrence frequency of such extreme drought
events in the future, social resilience to extreme drought needs to be enhanced, which
will be a critical challenge for decision-makers involved in emergency management

efforts.
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Figure B.10. Same as Figure B.2. but for the 2011 drought.
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Figure B.11. Same as Figure B.1. but for the 2013 drought.
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Figure B.12. Same as Figure B.2. but for the 2013 drought.
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Figure C.1. The significant correlation between SPEI and SSTA under El Nifio events
(red denotes a significant positive correlation, blue denotes a significant negative

correlation, and the absolute number represents the lag times corresponding to the

SPEI).
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Figure C.2. Same as Figure C.1. but under La Nifia events.
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