Aasted CM, Yücel MA, Cooper RJ, Dubb J, Tsuzuki D, Becerra L, Petkov MP, Borsook D, Dan I, Boas DA. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial. Neurophotonics. 2015;2(2):020801. https://doi.org/10.1117/1.NPh.2.2.020801.
Aron AR. From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biol Psychiat. 2011;69(12):e55–68. https://doi.org/10.1016/j.biopsych.2010.07.024.
Aron AR, Poldrack RA. Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus. The Journal of Neuroscience. 2006;26(9):24242433. https://doi.org/10.1523/JNEUROSCI.4682-05.2006.
Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences. 2004;8(4):170177. https://doi.org/10.1016/j.tics.2004.02.010.
Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences. 2014;18(4):177185. https://doi.org/10.1016/j.tics.2013.12.003.
Banich MT. (2019). The Stroop Effect Occurs at Multiple Points Along a Cascade of Control: Evidence From Cognitive Neuroscience Approaches. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02164.
Bari A, Robbins TW. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog Neurobiol. 2013;108:4479. https://doi.org/10.1016/j.pneurobio.2013.06.005.
Baxter LR, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry. 1989;46(3):243250. https://doi.org/10.1001/archpsyc.1989.01810030049007.
Bechara A, Damasio AR. The somatic marker hypothesis: A neural theory of economic decision. Games Economic Behavior. 2005;52(2):336372. https://doi.org/10.1016/j.geb.2004.06.010.
Belger A, Puce A, Krystal JH, Gore JC, Goldman-Rakic P, McCarthy G. Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Hum Brain Mapp. 1998;6(1):1432.
Bode S, Haynes J-D. Decoding sequential stages of task preparation in the human brain. NeuroImage. 2009;45(2):606613. https://doi.org/10.1016/j.neuroimage.2008.11.031.
Budhani S, Marsh AA, Pine DS, Blair RJR. Neural correlates of response reversal: Considering acquisition. NeuroImage. 2007;34(4):17541765. https://doi.org/10.1016/j.neuroimage.2006.08.060.
Buxton RB. The Elusive Initial Dip. NeuroImage. 2001;13(6):953958. https://doi.org/10.1006/nimg.2001.0814.
Cai X, Padoa-Schioppa C. Contributions of orbitofrontal and lateral prefrontal cortices to economic choice and the good-to-action transformation. Neuron. 2014;81(5):11401151. https://doi.org/10.1016/j.neuron.2014.01.008.
Cai Y, Li S, Liu J, Li D, Feng Z, Wang Q, Chen C, Xue G. The Role of the Frontal and Parietal Cortex in Proactive and Reactive Inhibitory Control: A Transcranial Direct Current Stimulation Study. J Cogn Neurosci. 2016;28(1):177186. https://doi.org/10.1162/jocn_a_00888.
Chamberlain SR, Menzies L, Hampshire A, Suckling J, Fineberg NA, del Campo N, Aitken M, Craig K, Owen AM, Bullmore ET, Robbins TW, Sahakian BJ. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science. 2008;321(5887):421422. https://doi.org/10.1126/science.1154433.
Chudasama Y, Daniels TE, Gorrin DP, Rhodes SEV, Rudebeck PH, Murray EA. The Role of the Anterior Cingulate Cortex in Choices based on Reward Value and Reward Contingency. Cereb Cortex. 2013;23(12):28842898. https://doi.org/10.1093/cercor/bhs266.
Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. Multi-task connectivity reveals flexible hubs for adaptive task control. Nature neuroscience. 2013;16(9):13481355. https://doi.org/10.1038/nn.3470.
Cools R, Clark L, Owen AM, Robbins TW. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(11), 45634567. https://doi.org/20026435.
Costantini M, Vacri AD, Chiarelli AM, Ferri F, Romani GL, Merla A. Studying social cognition using near-infrared spectroscopy: The case of social Simon effect. J Biomed Opt. 2013;18(2):025005. https://doi.org/10.1117/1.JBO.18.2.025005.
Cui X, Bray S, Bryant DM, Glover GH, Reiss AL. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage. 2011;54(4):28082821. https://doi.org/10.1016/j.neuroimage.2010.10.069.
Cunillera T, Fuentemilla L, Brignani D, Cucurell D, Miniussi C. (2014). A Simultaneous Modulation of Reactive and Proactive Inhibition Processes by Anodal tDCS on the Right Inferior Frontal Cortex. PLoS ONE, 9(11). https://doi.org/10.1371/journal.pone.0113537.
Davidson RJ, Henriques J. (2000). Regional brain function in sadness and depression. In The neuropsychology of emotion (p. 269297). Oxford University Press.
Davidson RJ, Irwin W. The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences. 1999;3(1):1121. https://doi.org/10.1016/S1364-6613(98)01265-0.
de Zubicaray GI, Andrew C, Zelaya FO, Williams SC, Dumanoir C. Motor response suppression and the prepotent tendency to respond: A parametric fMRI study. Neuropsychologia. 2000;38(9):12801291. https://doi.org/10.1016/s0028-3932(00)00033-6.
Deglin VL, Kinsbourne M. Divergent Thinking Styles of the Hemispheres: How Syllogisms Are Solved during Transitory Hemisphere Suppression. Brain Cogn. 1996;31(3):285307. https://doi.org/10.1006/brcg.1996.0048.
Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA. Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol. 2000;84(6):30723077. https://doi.org/10.1152/jn.2000.84.6.3072.
Dias R, Robbins TW, Roberts AC. Dissociation in prefrontal cortex of affective and attentional shifts. Nature. 1996;380(6569):6972. https://doi.org/10.1038/380069a0.
Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA. 2007;104(26):1107311078. https://doi.org/10.1073/pnas.0704320104.
Duann J-R, Ide JS, Luo X, Li CR. Functional Connectivity Delineates Distinct Roles of the Inferior Frontal Cortex and Presupplementary Motor Area in Stop Signal Inhibition. The Journal of Neuroscience. 2009;29(32):1017110179. https://doi.org/10.1523/JNEUROSCI.1300-09.2009.
Fellows LK, Farah MJ. Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm. Brain: A Journal of Neurology. 2003;126(Pt 8):18301837. https://doi.org/10.1093/brain/awg180.
Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 2012;63(2):921935. https://doi.org/10.1016/j.neuroimage.2012.03.049.
Garavan H, Ross TJ, Stein EA. Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proc Natl Acad Sci USA. 1999;96(14):83018306. https://doi.org/10.1073/pnas.96.14.8301.
Ghahremani DG, Monterosso J, Jentsch JD, Bilder RM, Poldrack RA. (2010). Neural Components Underlying Behavioral Flexibility in Human Reversal Learning. Cerebral Cortex (New York, NY), 20(8), 18431852. https://doi.org/10.1093/cercor/bhp247.
Hampshire A, Chaudhry AM, Owen AM, Roberts AC. Dissociable roles for lateral orbitofrontal cortex and lateral prefrontal cortex during preference driven reversal learning. NeuroImage. 2012;59(4):41024112. https://doi.org/10.1016/j.neuroimage.2011.10.072.
Hampshire A, Owen AM. (2006). Fractionating attentional control using event-related fMRI. Cerebral Cortex (New York, N.Y.: 1991), 16(12), 16791689. https://doi.org/10.1093/cercor/bhj116.
Hampton AN, O’Doherty JP. Decoding the neural substrates of reward-related decision making with functional MRI. Proc Natl Acad Sci USA. 2007;104(4):13771382. https://doi.org/10.1073/pnas.0606297104.
Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324(5927):646648. https://doi.org/10.1126/science.1168450.
Harmon-Jones E, Allen JJ. Behavioral activation sensitivity and resting frontal EEG asymmetry: Covariation of putative indicators related to risk for mood disorders. J Abnorm Psychol. 1997;106(1):159163. https://doi.org/10.1037//0021-843x.106.1.159.
Herrington JD, Mohanty A, Koven NS, Fisher JE, Stewart JL, Banich MT, Webb AG, Miller GA, Heller W. Emotion-modulated performance and activity in left dorsolateral prefrontal cortex. Emotion. 2005;5(2):200207. https://doi.org/10.1037/1528-3542.5.2.200.
Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci. 2004;16(3):463478. https://doi.org/10.1162/089892904322926791.
Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 2009;48(10):D280–98.
Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. The neural basis of reversal learning: An updated perspective. Neuroscience. 2017;345:1226. https://doi.org/10.1016/j.neuroscience.2016.03.021.
Izquierdo A, Suda RK, Murray EA. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2004;24(34):75407548. https://doi.org/10.1523/JNEUROSCI.1921-04.2004.
Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):12641267.
Jonides J, Nee DE. Brain mechanisms of proactive interference in working memory. Neuroscience. 2006;139(1):181193. https://doi.org/10.1016/j.neuroscience.2005.06.042.
Kawai T, Yamada H, Sato N, Takada M, Matsumoto M. Roles of the Lateral Habenula and Anterior Cingulate Cortex in Negative Outcome Monitoring and Behavioral Adjustment in Nonhuman Primates. Neuron. 2015;88(4):792804. https://doi.org/10.1016/j.neuron.2015.09.030.
Kawashima R, Satoh K, Itoh H, Ono S, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, Yanagisawa T, Fukuda H. Functional anatomy of GO/NO-GO discrimination and response selection—A PET study in man. Brain Res. 1996;728(1):7989.
Keiflin R, Reese RM, Woods CA, Janak PH. The Orbitofrontal Cortex as Part of a Hierarchical Neural System Mediating Choice between Two Good Options. J Neurosci. 2013;33(40):1598915998. https://doi.org/10.1523/JNEUROSCI.0026-13.2013.
Konishi S, Nakajima K, Uchida I, Kikyo H, Kameyama M, Miyashita Y. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain: A Journal of Neurology. 1999;122 (Pt(5):981991. https://doi.org/10.1093/brain/122.5.981.
Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y. No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. The European Journal of Neuroscience. 1998;10(3):12091213. https://doi.org/10.1046/j.1460-9568.1998.00167.x.
Lang PJ, Bradley MM, Cuthbert BN. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. University of Florida, Gainesville, FL.
León-Carrión J, León-Domínguez U. Functional Near-Infrared Spectroscopy (fNIRS): Principles and Neuroscientific Applications. Neuroimaging - Methods. 2012. https://doi.org/10.5772/23146.
Mahmoudzadeh M, Dehaene-Lambertz G, Fournier M, Kongolo G, Goudjil S, Dubois J, Grebe R, Wallois F. (2013). Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proceedings of the National Academy of Sciences, 110(12), 48464851. https://doi.org/10.1073/pnas.1212220110.
Mandrick K, Derosiere G, Dray G, Coulon D, Micallef J-P, Perrey S. Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses. Int J Ind Ergon. 2013;43(4):335341. https://doi.org/10.1016/j.ergon.2013.05.003.
Moorman DE, Aston-Jones G. Orbitofrontal Cortical Neurons Encode Expectation-Driven Initiation of Reward-Seeking. J Neurosci. 2014;34(31):1023410246. https://doi.org/10.1523/JNEUROSCI.3216-13.2014.
Morawetz C, Bode S, Baudewig J, Kirilina E, Heekeren HR. (2016). Changes in Effective Connectivity Between Dorsal and Ventral Prefrontal Regions Moderate Emotion Regulation. Cerebral Cortex (New York, N.Y.: 1991), 26(5), 19231937. https://doi.org/10.1093/cercor/bhv005.
Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, Oyanagi C, Konishi J, Fukuyama H, Shibasaki H. (2001). Dissociable mechanisms of attentional control within the human prefrontal cortex. Cerebral Cortex (New York, N.Y.: 1991), 11(1), 8592. https://doi.org/10.1093/cercor/11.1.85.
Nelson JK, Reuter-Lorenz PA, Sylvester C-YC, Jonides J, Smith EE. (2003). Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proceedings of the National Academy of Sciences, 100(19), 1117111175. https://doi.org/10.1073/pnas.1334125100.
Neubert F-X, Mars RB, Buch ER, Olivier E, Rushworth MFS. Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci USA. 2010;107(30):1324013245. https://doi.org/10.1073/pnas.1000674107.
O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci. 2001;4(1):95102. https://doi.org/10.1038/82959.
O’Doherty J, Critchley H, Deichmann R, Dolan RJ. Dissociating Valence of Outcome from Behavioral Control in Human Orbital and Ventral Prefrontal Cortices. The Journal of Neuroscience. 2003;23(21):79317939. https://doi.org/10.1523/JNEUROSCI.23-21-07931.2003.
O'Doherty JP, Dolan RJ. (2006). The role of human orbitofrontal cortex in reward prediction and behavioral choice: Insights from neuroimaging. In: Zald DH, Rauch SL, editors. The orbitofrontal cortex. Oxford, United Kingdom: Oxford University Press; 2006. pp. 265–284.
Overskeid G. The Slave of the Passions: Experiencing Problems and Selecting Solutions. Review of General Psychology. 2000;4(3):284309. https://doi.org/10.1037/1089-2680.4.3.284.
Parasuraman R, et Caggiano D. (2005). Neural and genetic assays of human mental workload. In D.K., McBride, & D., Schmorrow, editors. Quantifying human information processing (Chap. 4), Lexington Books.
Perrey S, Thedon T, Rupp T. NIRS in ergonomics: Its application in industry for promotion of health and human performance at work. Int J Ind Ergon. 2010;40(2):185189. https://doi.org/10.1016/j.ergon.2008.11.002.
Prabhakaran V, Smith JA, Desmond JE, Glover GH, Gabrieli JD. Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cogn Psychol. 1997;33(1):4363. https://doi.org/10.1006/cogp.1997.0659.
Remijnse PL, Nielen MMA, Uylings HBM, Veltman DJ. Neural correlates of a reversal learning task with an affectively neutral baseline: An event-related fMRI study. NeuroImage. 2005;26(2):609618. https://doi.org/10.1016/j.neuroimage.2005.02.009.
Roche-Labarbe N, Zaaimi B, Berquin P, Nehlig A, Grebe R, Wallois F. NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children. Epilepsia. 2008;49(11):18711880. https://doi.org/10.1111/j.1528-1167.2008.01711.x.
Rothkirch M, Schmack K, Schlagenhauf F, Sterzer P. Implicit motivational value and salience are processed in distinct areas of orbitofrontal cortex. NeuroImage. 2012;62(3):17171725. https://doi.org/10.1016/j.neuroimage.2012.06.016.
Rygula R, Walker SC, Clarke HF, Robbins TW, Roberts AC. Differential Contributions of the Primate Ventrolateral Prefrontal and Orbitofrontal Cortex to Serial Reversal Learning. The Journal of Neuroscience. 2010;30(43):1455214559. https://doi.org/10.1523/JNEUROSCI.2631-10.2010.
Schmidt R, Leventhal DK, Mallet N, Chen F, Berke JD. Canceling actions involves a race between basal ganglia pathways. Nature neuroscience. 2013;16(8):11181124. https://doi.org/10.1038/nn.3456.
Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. The Journal of Neuroscience. 2007;27(9):23492356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007.
Smielewski P, Kirkpatrick P, Minhas P, Pickard JD, Czosnyka M. Can cerebrovascular reactivity be measured with near-infrared spectroscopy? Stroke. 1995;26(12):22852292. https://doi.org/10.1161/01.str.26.12.2285.
Sobotka SS, Davidson RJ, Senulis JA. Anterior brain electrical asymmetries in response to reward and punishment. Electroencephalogr Clin Neurophysiol. 1992;83(4):236247. https://doi.org/10.1016/0013-4694(92)90117-Z.
Spechler PA, Chaarani B, Hudson KE, Potter A, Foxe JJ, Garavan H. Response inhibition and addiction medicine: From use to abstinence. Prog Brain Res. 2016;223:143164. https://doi.org/10.1016/bs.pbr.2015.07.024.
Spielberg JM, Miller GA, Warren SL, Engels AS, Crocker LD, Banich MT, Sutton BP, Heller W. A brain network instantiating approach and avoidance motivation. Psychophysiology. 2012;49(9):12001214. https://doi.org/10.1111/j.1469-8986.2012.01443.x.
Swann NC, Cai W, Conner CR, Pieters TA, Claffey MP, George JS, Aron AR, Tandon N. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. NeuroImage. 2012;59(3):28602870. https://doi.org/10.1016/j.neuroimage.2011.09.049.
Swick D, Ashley V, Turken AU. Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience. 2008;9:102. https://doi.org/10.1186/1471-2202-9-102.
Szatkowska I, Bogorodzki P, Wolak T, Marchewka A, Szeszkowski W. The effect of motivation on working memory: An fMRI and SEM study. Neurobiol Learn Mem. 2008;90(2):475478. https://doi.org/10.1016/j.nlm.2008.06.001.
Tops M, Boksem MAS, Quirin M, IJzerman H, Koole SL. (2014). Internally directed cognition and mindfulness: An integrative perspective derived from predictive and reactive control systems theory. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00429.
Verbruggen F, Logan GD. Automatic and Controlled Response Inhibition: Associative Learning in the Go/No-Go and Stop-Signal Paradigms. J Exp Psychol Gen. 2008;137(4):649672. https://doi.org/10.1037/a0013170.
Waegeman A, Declerck CH, Boone C, Seurinck R, Parizel PM. Individual differences in behavioral flexibility in a probabilistic reversal learning task: An fMRI study. Journal of Neuroscience Psychology Economics. 2014;7(4):203218. https://doi.org/10.1037/npe0000026.
Wager TD, Smith EE. Neuroimaging studies of working memory: A meta-analysis. Cognitive Affective Behavioral Neuroscience. 2003;3(4):255274. https://doi.org/10.3758/cabn.3.4.255.
Wallis JD. Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci. 2007;30:3156. https://doi.org/10.1146/annurev.neuro.30.051606.094334.
Weinberger DR. A connectionist approach to the prefrontal cortex. The Journal of Neuropsychiatry Clinical Neurosciences. 1993;5(3):241253. https://doi.org/10.1176/jnp.5.3.241.
Wilcox T, Biondi M. FNIRS in the developmental sciences. Wiley Interdiscip Rev Cogn Sci. 2015;6(3):263283. https://doi.org/10.1002/wcs.1343.
Xue G, Lu Z, Levin IP, Weller JA, Li X, Bechara A. Functional Dissociations of Risk and Reward Processing in the Medial Prefrontal Cortex. Cereb Cortex. 2009;19(5):10191027. https://doi.org/10.1093/cercor/bhn147.
Xue G, Xue F, Droutman V, Lu Z-L, Bechara A, Read S. Common neural mechanisms underlying reversal learning by reward and punishment. PloS One. 2013;8(12):e82169. https://doi.org/10.1371/journal.pone.0082169.