[1] Oberoi Rajneet K, Parrish Karen E, Sio Terence T et al. Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. [J]. Neuro-oncology, 2016, 18: 27-36.
[2] Butowski Nicholas A, Epidemiology and diagnosis of brain tumors. [J]. Continuum (Minneap Minn), 2015, 21: 301-313.
[3] Banan Rouzbeh, Hartmann Christian. The new WHO 2016 classification of brain tumors-what neurosurgeons need to know. [J]. Acta Neurochir (Wien), 2017, 159: 403-418.
[4] Jiang Tao, Mao Ying, Ma Wenbin et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas. [J]. Cancer Lett., 2016, 375: 263-273.
[5] Weller Michael, Cloughesy Timothy, Perry James R et al. Standards of care for treatment of recurrent glioblastoma--are we there yet? [J]. Neuro-oncology, 2013, 15: 4-27.
[6] Wigmore Timothy J, Mohammed Kabir, Jhanji Shaman, Long-term Survival for Patients Undergoing Volatile versus IV Anesthesia for Cancer Surgery: A Retrospective Analysis. [J]. Anesthesiology, 2016, 124: 69-79.
[7] Wu Zhi-Fu, Lee Meei-Shyuan, Wong Chih-Shung et al. Propofol-based Total Intravenous Anesthesia Is Associated with Better Survival Than Desflurane Anesthesia in Colon Cancer Surgery. [J]. Anesthesiology, 2018, 129: 932-941.
[8] Yan Tao, Zhang Guo-Hua, Wang Bao-Na et al. Effects of propofol/remifentanil-based total intravenous anesthesia versus sevoflurane-based inhalational anesthesia on the release of VEGF-C and TGF-β and prognosis after breast cancer surgery: a prospective, randomized and controlled study. [J]. BMC Anesthesiol, 2018, 18: 131.
[9] Xu Jinquan, Xu Weiyun, Zhu Jiaqun, Propofol suppresses proliferation and invasion of glioma cells by upregulating microRNA-218 expression. [J]. Mol Med Rep, 2015, 12: 4815-4820.
[10] Shi Q Y, Zhang S J, Liu L et al. Sevoflurane promotes the expansion of glioma stem cells through activation of hypoxia-inducible factors in vitro. [J]. Br J Anaesth, 2015, 114: 825-830.
[11] Zheng Xianqiang, Cong Jing, Zhang Huidong et al. Personalized analysis of pathway aberrance induced by sevoflurane and propofol. [J]. Mol Med Rep, 2017, 16: 5312-5320.
[12] Lu Yu, Jian Min-Yu, Ouyang Yi-Bing et al. Changes in Rat Brain MicroRNA Expression Profiles Following Sevoflurane and Propofol Anesthesia. [J]. Chin. Med. J., 2015, 128: 1510-1515.
[13] Markovic-Bozic Jasmina, Karpe Blaz, Potocnik Iztok et al. Effect of propofol and sevoflurane on the inflammatory response of patients undergoing craniotomy. [J]. BMC Anesthesiol, 2016, 16: 18.
[14] Dvash Efrat, Har-Tal Michal, Barak Sara et al. Leukotriene C4 is the major trigger of stress-induced oxidative DNA damage. [J]. Nat Commun, 2015, 6: 10112.
[15] Yang Chin-An, Huang Hsi-Yuan, Lin Cheng-Li et al. G6PD as a predictive marker for glioma risk, prognosis and chemosensitivity. [J]. J. Neurooncol., 2018, 139: 661-670.
[16] Balsa E, Marco R, Perales-Clemente E, et al. NDUFA4 Is a Subunit of Complex IV of the Mammalian Electron Transport Chain[J]. Cell Metabolism, 2012, 16(3):378-386.
[17] Li Linhai, Li Yuejin, Huang Yingguang et al. Long non-coding RNA MIF-AS1 promotes gastric cancer cell proliferation and reduces apoptosis to upregulate NDUFA4. [J]. Cancer Sci., 2018, 109: 3714-3725.
[18] Eroğlu Canan, Seçme Mücahit, Bağcı Gülseren et al. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. [J]. Tumour Biol., 2015, 36: 9437-9446.
[19] Bredel Markus, Scholtens Denise M, Harsh Griffith R et al. A network model of a cooperative genetic landscape in brain tumors. [J]. JAMA, 2009, 302: 261-275.
[20] Wirth C, Brandt U, Hunte C, et al. Structure and function of mitochondrial complex I.[J]. Biochimica Et Biophysica Acta, 2016, 1857(7):902-914.
[21] Zhu Yushan, Li Min, Wang Xiaohui et al. Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release. [J]. Cell Res., 2012, 22: 127-141.
[22] Li Yang, Yang Xuan, Yang Jingyan et al. An 11-gene-based prognostic signature for uveal melanoma metastasis based on gene expression and DNA methylation profile. [J]. J. Cell. Biochem., 2018.
[23] Fan Lin, Zhu Chunyan, Qiu Rongmin et al. MicroRNA-661 Enhances TRAIL or STS Induced Osteosarcoma Cell Apoptosis by Modulating the Expression of Cytochrome c1. [J]. Cell. Physiol. Biochem., 2017, 41: 1935-1946.
[24] Han Yingyan, Sun Shujuan, Zhao Meisong et al. CYC1 Predicts Poor Prognosis in Patients with Breast Cancer. [J]. Dis. Markers, 2016, 2016: 3528064.
[25] Muluhngwi Penn, Alizadeh-Rad Negin, Vittitow Stephany L et al. The miR-29 transcriptome in endocrine-sensitive and resistant breast cancer cells. [J]. Sci Rep, 2017, 7: 5205.
[26] Brüggemann Maria, Gromes Arabella, Poss Mirjam et al. Systematic Analysis of the Expression of the Mitochondrial ATP Synthase (Complex V) Subunits in Clear Cell Renal Cell Carcinoma. [J]. Transl Oncol, 2017, 10: 661-668.
[27] Tang N Y, Chueh FS, Yu CC, et al. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells[J]. Oncology Reports, 2016.
[28] Akaike Keisuke, Suehara Yoshiyuki, Kohsaka Shinji et al. Regulated by PAX3/FOXO1 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. [J]. Oncotarget, 2018, 9: 25206-25215.
[29] Mumby Marc. PP2A: unveiling a reluctant tumor suppressor. [J]. Cell, 2007, 130: 21-24.
[30] Belogubova E V, Ulibina Y M, Suvorova I K, et al. CombinedCYP1A1/GSTM1at-risk genotypes are overrepresented in squamous cell lung carcinoma patients but underrepresented in elderly tumor-free subjects[J]. J Cancer Res Clin Oncol, 2006, 132(5):327-331.
[31] Tan X, Wang Y, Han Y et al. Genetic variation in the GSTM3 promoter confer risk and prognosis of renal cell carcinoma by reducing gene expression. [J]. Br. J. Cancer, 2013, 109: 3105-3115.
[32] Sun Ying, Wang Yu, Yin Yufeng et al. GSTM3 reverses the resistance of hepatoma cells to radiation by regulating the expression of cell cycle/apoptosis-related molecules. [J]. Oncol Lett, 2014, 8: 1435-1440.
[33] Bulus H, Oguztuzun S, Güler Simsek G et al. Expression of CYP and GST in human normal and colon tumor tissues. [J]. Biotech Histochem, 2018, undefined: 1-9.
[34] Liang Zhongxing, Bian Xuehai, Shim Hyunsuk. Downregulation of microRNA-206 promotes invasion and angiogenesis of triple negative breast cancer. [J]. Biochem. Biophys. Res. Commun., 2016, 477: 461-466.
[35] Buonato Janine M, Lazzara Matthew J. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. [J]. Cancer Res., 2014, 74: 309-319.
[36] Hu Bangli, Shi Cheng, Jiang Hai-Xing et al. Identification of novel therapeutic target genes and pathway in pancreatic cancer by integrative analysis. [J]. Medicine (Baltimore), 2017, 96: e8261.
[37] Gao Huiqiao, Zhang Zhenyu, Systematic Analysis of Endometrial Cancer-Associated Hub Proteins Based on Text Mining. [J]. Biomed Res Int, 2015, 2015: 615825.
[38] Tian XiaoQing, Sun DanFeng, Zhao ShuLiang et al. Screening of potential diagnostic markers and therapeutic targets against colorectal cancer. [J]. Onco Targets Ther, 2015, 8: 1691-1699.